# LaPave

#### Notes:

Cells with Blue background are data entry fields

Open a copy of LaPave to follow along

The tabs are listed in order that they appear in LaPave

The Excel version of LaPave is JMF specific. Each JMF has its own LaPave file. One LaPave, One JMF.

The last page is a guide for the roadway.

# **Reporting Tab**

The district lab:

Download the latest version of LaPave from the "Public Share Folder" that is provided by the Materials Lab (section 22)

On the reporting tab:

- 1.) "Check for Latest Version" of LaPave
- 2.) "Update Material Codes from the Server"



Send the contractor the blank LaPave with the latest Material Codes loaded

### Materials Setup

The contractor can create a "Material Setup" that can be exported & imported

Materials that are specific to a contractor can be selected from drop downs. The setup will greatly reduce the selection options as well as speed up the JMF process. Mix additives, AC source & grade, coarse & fine aggregates, and RAP are some of sources that can be contractor specific

Consensus properties as well as gradations for the individual aggregates can be entered. This will auto populate certain fields for the JMF input process

| XI -           | <del>5</del> - @             |                                                                                                           |                      | Lapave 502_newspec_3-30-16-Instruct                                                                                                    | ions.xlsm - Excel |               |                   |                                |                    |           |              |        | ? 📧         | - 8 >    |
|----------------|------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-------------------|--------------------------------|--------------------|-----------|--------------|--------|-------------|----------|
| FILE           | HOME                         | INSERT PAGE LAYOUT FORMULAS DATA REVIEW                                                                   | VI                   | W                                                                                                                                      |                   |               |                   |                                |                    |           |              |        |             | Sign     |
| Paste          | Cut<br>Copy 👻<br>Format Pair | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                   | Wrap<br>Mer <u>c</u> | Text<br>e & Center ~ \$ • % ) * % % Conditional Format as Formating ~ Table ~                                                          | -                 | Insert Delete | Format<br>▼ Clear | Sum • AZ<br>Sort &<br>Filter • | Find &<br>Select + |           |              |        |             |          |
| Clip           | board                        | Fa Font Fa Alignment                                                                                      |                      | Gr Number Gr Styles                                                                                                                    |                   | Cells         |                   | Editing                        |                    |           |              |        |             |          |
| B26            | <b>-</b>                     | 🗙 🗸 $f_x$ APS00000400-Marathon Petroleum Compa                                                            | any -                | Garyville, LA                                                                                                                          |                   |               |                   |                                |                    |           |              |        |             | ,        |
|                | Α                            | В                                                                                                         | С                    | D                                                                                                                                      |                   | E             | F                 | G                              | Н                  | 1         | J            | К      | L           | M        |
| 1 This         | page is us                   | ed to select commonly used materials by the asphalt produc                                                | er, t                | he dropdown fields throughout LaPave will be populated with the options                                                                |                   |               |                   |                                |                    |           |              |        |             |          |
| 2 selec        | ted here a                   | nd the default parameters entered for each option                                                         | *                    | - overred meterial                                                                                                                     |                   |               |                   |                                |                    |           |              |        |             |          |
| 3              |                              |                                                                                                           |                      | - expired material                                                                                                                     |                   |               |                   |                                |                    |           |              |        |             |          |
| 5 Aspl         | alt Prodr                    | PS00000520-Contractor Supplied                                                                            |                      |                                                                                                                                        |                   |               |                   |                                |                    |           |              |        |             |          |
| 6              |                              |                                                                                                           |                      |                                                                                                                                        |                   |               |                   |                                |                    | Exi       | oort Ma      | terial | Setup       |          |
| 7 An           | ti-Strips                    | Producer/Supplier                                                                                         | 1                    | Material                                                                                                                               | Custom Name       | ldentifier    | Anti-Strip %      |                                |                    |           |              |        | · ·         |          |
| 8              | 1                            | APS00003920-Arr-Maz Products, Inc Mulberry, FL                                                            | _                    | 1002M00220-Anti-Strip Additive-Ad-Here LA - Arr-MazProducts                                                                            | Anti-Strip        |               | 0.6               |                                |                    |           |              |        |             |          |
| 10             | 3                            |                                                                                                           | -                    |                                                                                                                                        | 1                 |               | 1                 |                                |                    | Im        | port Ma      | terial | Setup       |          |
| 11             | 4                            |                                                                                                           |                      |                                                                                                                                        |                   |               |                   |                                |                    |           | porcivia     | terrar | Secup       |          |
| 12             |                              |                                                                                                           |                      |                                                                                                                                        |                   |               |                   | -                              |                    |           |              |        |             |          |
| 13 War         | m Mix Ad                     | Producer/Supplier<br>PS00000520 Contractor Supplied                                                       | 0                    | Material                                                                                                                               | Warm Mix Eoa      | ming          | Method            | Rate                           |                    |           |              |        |             |          |
| 15             | 2                            |                                                                                                           | -                    |                                                                                                                                        | , warm wix r oa   | ming          | , water           | 0.270                          |                    |           |              |        |             |          |
| 16             | 3                            |                                                                                                           |                      |                                                                                                                                        | i                 |               |                   | i                              |                    |           |              |        |             |          |
| 17             | 4                            |                                                                                                           | _                    |                                                                                                                                        |                   |               |                   | 1                              |                    |           |              |        |             |          |
| 18<br>19 Fiber | re/Pubber                    | Producer/Supplier                                                                                         | •                    | Material                                                                                                                               |                   |               | Eiber Type        | Pate %                         |                    |           |              |        |             |          |
| 20             | 1                            | r i oudeen supplier                                                                                       | 0                    | Waterial                                                                                                                               |                   |               | l liber type      | Rate 70                        |                    |           |              |        |             |          |
| 21             | 2                            |                                                                                                           |                      |                                                                                                                                        |                   |               |                   | 1                              |                    |           |              |        |             |          |
| 22             | 3                            |                                                                                                           | _                    |                                                                                                                                        |                   |               |                   | ļ                              |                    |           |              |        |             |          |
| 23             | 4                            |                                                                                                           | -                    |                                                                                                                                        |                   |               |                   |                                |                    |           |              |        |             |          |
| 25 Asp         | halt Bind                    | Producer/Supplier                                                                                         | 4                    | Material                                                                                                                               |                   |               | Grade             |                                |                    |           |              |        |             |          |
| 26             | 1                            | APS00000400-Marathon Petroleum Company - Garyville, LA                                                    | 1 -                  | 1002M00020-Binder PG 58-28-Binder PG 58-28 Marathon - Garyville                                                                        | PG 58-28          |               | 58-28             |                                |                    |           |              |        |             |          |
| 27             | 2 APS00                      | 100400-Marathon Petroleum Company - Garyville, LA<br>100410-Pelican Refining Co Lake Charles, LA          |                      | 1002M00035-Binder PG 67-22-Binder PG 67-22 Marathon - Garyville                                                                        | PG 67-22          |               | 67-22             | _                              |                    |           |              |        |             |          |
| 28             | 3 APS00                      | 00510-Valero Marketing and Supply - St. James, LA                                                         |                      | 1002M00040-Binder PG 70-22m-Binder PG 70-22m Marathon - Garyville<br>1002M00050 Binder PG 76 22m Binder PG 76 22m Marathon - Garyville | PG 76 22M         |               | 70-22m            |                                |                    |           |              |        |             |          |
| 30             | 5 APS00                      | 10280-Calumet Laboratories/Lubricants - Shreveport, LA<br>10280-Ergon Asphalt & Emulsions - Memphis, TN   |                      | To zimo o so-binder r o ro-zzm-binder r o ro-zzm waratton - oaiywie                                                                    | 1070-221          |               | 10-22111          |                                |                    |           |              |        |             |          |
| 31             | 6 APS000                     | 10660-Martin Asphalt Company - South Houston, TX<br>10870-Martin Asphalt Company Stanolind - Beaumont, TX |                      |                                                                                                                                        |                   |               |                   |                                |                    |           |              |        |             |          |
| 32             | 7 APS000                     | 10880-Martin Asphalt Company Neches - Beaumont, TX                                                        | ▼                    |                                                                                                                                        |                   |               | -                 |                                |                    |           |              |        |             |          |
| 33             | 8                            |                                                                                                           | -                    |                                                                                                                                        |                   |               | Bulk              |                                | FΔΔ                | Sand Eq.  | Flat & Flong | CAA    | Micro Deval | Friction |
| 35 <b>Co</b> a | arse Agq                     | Producer/Supplier                                                                                         | 4                    | Material                                                                                                                               |                   |               | Gravity           | Absorption                     | Method A           | - 4.75 mm | 5:1          | Und I  | % loss      | Rating   |
| 36             | 1                            | APS00006600-Lafarge Aggregates-Isabel-Bogalusa,LA                                                         |                      | 1003M00120-Agg, Coarse - HMAC-Agg, Coarse - HMAC-Lafarge(Honey                                                                         | +1/2" Cr Grave    |               | 2.464             | 2                              |                    | İ         |              |        |             |          |
| 37             | 2                            | APS00005880-Bayou Sand & Gravel, LLC-Amite, LA                                                            | _                    | 1003M00120-Agg, Coarse - HMAC-Agg, Coarse - HMAC- Bayou S & G                                                                          | -1/2" Cr Gravel   |               | 2.451             | 2.3                            | 47                 |           |              |        |             |          |
| 38<br>39       | 3                            | APS00007380-Vulcan Materials Co-Ft Payne-Grand                                                            | -                    | 1003M00120-Agg, Coarse - HMAC-Agg, Coarse - HMAC -                                                                                     | #08 LS            |               | 2.649             | 1                              |                    | 1         | i i          |        | 1           |          |
| 40             | 5                            | Al occorroco-valcan matchais oo-i tir ayne-oranu                                                          |                      | Toomoonzongy, Obarse - HillAongy, Obarse - HillAo                                                                                      | 1                 |               | 2.001             | 1                              | i                  | i         | 1 1          |        | 1           |          |
| 41             | 6                            |                                                                                                           |                      |                                                                                                                                        |                   |               |                   |                                |                    | 1         |              |        |             |          |
| 42             | 7                            |                                                                                                           |                      |                                                                                                                                        |                   |               |                   |                                |                    |           |              |        |             |          |
| 43             | 8                            |                                                                                                           |                      |                                                                                                                                        |                   |               | 1                 |                                |                    | 1         | 1            |        |             |          |
| 4 F            | <u>Ma</u>                    | terial Setup Project Optimum AC Test Results Comp.                                                        | Gra                  | . and FAA input Moisture Susceptibility Design JMF Input JMF                                                                           | JMF CHECK (       | •             |                   |                                |                    |           |              |        |             |          |
| READY          |                              |                                                                                                           |                      |                                                                                                                                        |                   |               |                   |                                |                    |           |              |        |             | - 1109   |

# Project Tab

The Project Tab is used to enter project information that can be modified if necessary

- 1) Click the new button to create a new project
- 2) Enter the project number, project name, project engineer, contractor, ADT & ESAL count
- 3) Click the submit button record the entered information. If using the Excel version of LaPave, you must also use the "SAVE" function
- 4) The arrows are used to scroll through the projects that have been entered

If the information for a project needs editing, scroll to that project. Edit the information & click submit. If using the Excel version of LaPave, you must also use the "SAVE" function

If you are on the last entry there will be a "You are on the last record" dialogue box



Optimum AC Test Results Tab



The "Optimum AC Test Results" tab is used to enter design information. The Blue fields are data entry fields.

- 1. One  $G_{mm}$  is entered at or near the optimal AC content
- 2. The sheet will calculate the G<sub>mm</sub> plus and minus 0.5% from the entered G<sub>mm</sub>.

- 3. A minimum of two gyratory briqs at the three design AC contents are to be made and entered into the top portion of the tab. There is a place for a third briq at each AC content if the designer so chooses.
- 4. There is also a section for a fourth AC content point for use at the option of the designer
- 5. The tab will plot give a suggested AC content that the designer may their discretion. This is based on the design voids entered and the graph fit
- 6. A verification  $G_{mm}$  also required as part of the design process
- 7. A minimum of two design and one max brig is required for the verification point. There are places for three of each if the designer chooses to utilize all entries.
- 8. The design information is plotted for Voids, VMA and VFA. The three or four points that form the graph line are the design points. The red point on the graph represents the verification point.
- 9. Mix type entry and Contractor Mix ID

# Comp. Grad. And FAA Input

This tab is being covered in two parts

The first will cover individual aggregate gradation, composite gradation, gradation bands and .45 power curve

- 1. The individual aggregate names will be picked up from the JMF input page along with bin percentages. The gradations can be populated one of two ways
  - a. If the contractor utilizes the Material Setup tab, gradation values will auto populate if they were set up.
  - b. They can be manually entered if "Other" is used on the "Aggr. Class" dropdown on the "JMF Input" tab. After manually entering the gradation, the "Aggr. Class" can be changed to either "Coarse" or "Fine"
- 2. Gradations for the individual aggregates
- 3. Composite gradation of the mix
- 4. Gradation band for the Nominal Aggregate Size
- 5. FAA values and bin percentages are auto populated from the "JMF Input" tab
- 6. .45 power curve

The second part of the "Comp. Grad. and FAA Input" tab is about mix correction factors.

This establishes gradations of lab design mixes after going through the ignition furnace as well as the difference between the known AC content compared to the scale to scale calculated AC content to create an AC correction factor.

There should be a minimum of two ignition furnace extractions, which are averaged, to determine correction.

- 1. Weight for the empty burn basket is entered. The weight of the basket and mix is entered before and after the furnace extraction. The initial weight of the recovered aggregate as well as the dried weight after washing over the #200 sieve.
- 2. The gradation weights are entered.
- 3. The weight of the + #4 crushed aggregate is entered to calculate the percent crushed.
- 4. If the difference between the two correction factors is greater than 0.15, two more furnace extractions should be performed.
- 5. A gradation comparison is given for the after burn gradation vs composite gradation.
- 6. The calculated correction factor that will be used on the JMF.
- 7. Entry for the second furnace extraction and gradation.

Repeat for the third and four if the difference between the first and second burns are greater than 0.15

X 8 5. d. :

Lapave 502\_newspec\_3-30-16-Instructions.xlsm - Excel

? 🗉 – 🗗 X



? 🗷 – 🗗 X × 1 2 1 Lapave 502 newspec 3-30-16-Instructions.xlsm - Excel PAGE LAYOUT FORMULAS DATA HOME H INSERT REVIEW R Sign in VIEW ∑ AutoSum • A 🔏 Cut • 10 • A A = = = 8 → E Wrap Text Normal 4 2 1... 1 Arial General 🗋 🗈 Copy 🔹 😈 Fill 🔻 B I U - 🗄 - 🖄 - A - = = = 🤄 🖅 🛱 Merge & Center - \$ - % , + & . . . Normal 421... Sort & Find & Paste Insert Delete Format ؇ Format Painter 🧶 Clear 🗸 Formatting Table -\* \* \* Filter - Select -Font Styles Editing Clipboard E. Alignment Number Cells ^  $\times \checkmark f_x$ H123  $\mathbf{v}$ С D G Н J К M N 0 P Q R S T U V W X 62 63 64 65 66 No Oven Temp Corr. 68 IGNITION OVEN - TR 323-02 (Ignition Oven Correction Factors and Verification Gradations IGNITION OVEN - TR 323-02 (Ignition Each JMF must have an Ignition Oven Correction Factor for AC in accordance with TR 323-02. A total of two (2) burns must be performed and the results averaged for the determination of the correction factor. If the difference between the two samples is greater than 0.015%, Oven Correction Factors and then a 3rd and 4th burn must be performed as well. Then the High and low values are discarded, and remaining two values are averaged 71 for the correct correction factor. Verification Gradations Test 1 - Burg GRADATION OF THE AGGREGATE 72 L 73 Tr. Baskets Test#1 Test#2 Test#3 Test#4 SIEVE WT. PERCENT Per.Coar Per.Pass Average Comp 1" 74 Baskets+Mix w/AC 0.00 0.00 100.0 100.0 100.0 100 0 100.0 3/4" 75 Baskets minus A 3/4" 0.00 0.00 100.0 100.0 100.0 100.0 100.0 4715.5 76 % LOSS 5.63 1/2" 95.6 95.9 95.7 95.7 1/2 4.39 4.39 95.6 95.7 86.4 66.0 53.1 38.6 27.7 5 77 Virgin AC - Added 4.3 3/8 8 24 12.63 874 3/8" 874 877 87.5 0.9 NO. 4 67.2 78 BAP(AC) - From JMF 20.72 33 35 66.7 NO. 4 66.7 67.8 79 Target AC 52 NO. 8 49.09 50.9 NO. 8 50.9 51.4 51.1 80 Corr. Factor 0.43 NO.16 295.3 15.64 6473 35.3 NO.16 35.3 35.7 35.5 Int.DryWt 81 1886.5 NO.30 9.67 74 40 25.6 NO.30 25.6 25.7 25.7 15.3 82 AfterWash NO 50 192.6 10 20 84 60 15.4 NO 50 15.4 15.3 13.5 126.2 52.0 21.0 91 NO.100 8.7 83 Decant. NO.100 6.69 91.29 8.7 8.7 8.6 6.4 84 Sieve Tot 1887.8 NO 200 2.75 94.04 6.0 NO.200 6.0 5.8 5.9 4.4 85 % Diff. -0.07 PAN % Crushed 98 98 98 3 Z AC 618.2 86 DECANT 91.5 WT.CRUSH Correction 0.43 0 42 0.4 0.00 87 ACC.TOTAL 1887.8 WT. +#4 Difference PERCENT CRUSHED 88 98 89 Max Value 0.43 Min Value 0.43 GRADATION OF THE AGGREGATE 90 Test 2 - Burn 91 Tr. Baskets SIEVE WT. PERCENT Per.Coar Per.Pass If Difference less than 0.15 Correction Factor = 0.43 6 92 Baskets+Mix w/A 100.0 If Difference greater than 0.15 Correction Factor = 0.00 0.00 B 93 Baskets minus AC 4756.5 3/4" 0.00 0.00 100.0 5.63 1/2" 94 % LOSS 77.7 4.12 4.12 95.9 Factor to be used on JMF Input 0.43 95 Virgin AC - Added 4.3 3/8" 8.23 12.35 87.7 375.1 LaPave 502 v16.03.18 96 RAP(AC) - From JMF 0.9 NO. 4 19.88 32.22 67.8 6/2/2016 Total AC 5.2 NO. 8 309.7 16.41 48.63 51.4 98 Corr. Factor 0.43 NO.16 15.66 64.30 35.7 Int.DryWt NO.30 187.9 9.96 74.25 25.7 99 100 AfterWash 1802 8 NO.50 197.6 10.47 84.72 15.3 Decant. 84.2 NO.100 126. 6.69 91.41 8.6 102 Sieve Tot 1887.2 NO.200 52.7 2.79 94.20 5.8 -0.01 PAN % Diff. 1 104 DECANT 84.2 WT.CRUSH 595.3 ACC.TOTAL 1887.2 WT. +#4 608.1 05 106 PERCENT CRUSHED 98 107 108 Tests Nos 3 and 4 only used if average from first 2 tests shows difference greater than 0.015 109 Test 3 - Burn GRADATION OF THE AGGREGATE Optimum AC Test Results Comp. Grad. and FAA Input Instructions Reporting Moisture Susceptibility Design 🛛 JM 📖 🕀 Material Setup Project 1 I • 

### Moisture Susceptibility Design

This will be covered in two parts.

LWT AASHTO T 324 - Can be used for all mixes. Required for all mixes under traffic.

- 1. There is an entry for the LWT for design and one for plant run mix that is part of the validation process
- 2. The date sampled for both design and validation
- 3. The G<sub>mm</sub> submitted with the design
- 4. The G<sub>mm</sub> determined from the validation that is automatically pulled from the JMF.
- 5. Air, water, and SSD weights are entered to determined void content of the gyratory samples
- 6. Paired samples and average voids of the pair.
- 7. If a dual wheel tracker or a second set of samples are tested this will be utilized.
- 8. Temperature test was performed
- 9. The number of passes on the LWT correlating to the mix type and specification requirements
- 10. Pass / Fail dropdown
- 11. The rut depth at the corresponding pass
- 12. If a dual wheel tracker or a second set of samples are tested this will be utilized

TSR TR 322 / AASHTO T 283 – Tensile Strength Ratio – This can be used for minor mixes at the option of the contractor.

Like the LWT, this test will need to be performed on the lab design as well as plant run mix.

- 1. Date mix was sampled
- 2. Weights entered to determine air voids. Sort the specimens into two sets of three so that the average percent air voids of the two sets are as close to equal as possible
- 3. Enter after vacuum SSD and in water weights to calculate percent saturation
- 4. Enter two diameter measurements per the testing procedure
- 5. Enter three thickness measurements per the testing procedure
- 6. Enter the dial reading from the loading apparatus
- 7. Enter the maximum load from the conversion table for the loading apparatus

| X Cut<br>Copy -<br>Format Painter<br>lioboard 5 Format Painter | • 10 • A  |               | Provide the second | 🖶 Wrap Text<br>📰 Merge & Ce | Gene        | ral -<br>96 • 58 58 Co<br>For | nditional Format as Nor<br>matting * Table * | rmal 4 2 1<br>rmal 4 2 1 | Normal 4 2 1 Normal 4 2 1 Norr<br>Normal 4 2 1 Normal 4 2 1 Norr | nal 4 2 1<br>nal 4 2 1 | Normal 4 2 1.<br>Normal |          | Delete Format | AutoSum * A<br>Fill * Sort &<br>Clear * Filter *<br>Editing | Find &<br>Select * |    |
|----------------------------------------------------------------|-----------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|-------------------------------|----------------------------------------------|--------------------------|------------------------------------------------------------------|------------------------|-------------------------|----------|---------------|-------------------------------------------------------------|--------------------|----|
| $\cdot$ $\times \checkmark f_x$                                |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |                               |                                              |                          |                                                                  |                        |                         |          |               |                                                             |                    |    |
| A                                                              | в         | С             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E                           | F           | G H                           | 1                                            | J                        | K                                                                | L                      | M                       | N        | 0             | P Q                                                         | R                  | ę  |
| LO                                                             | ADED V    | NHEEL 1       | TEST (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WT) A                       | AASHTO      | ) T 324                       |                                              |                          | LOA                                                              | DED V                  | VHEEL T                 | EST (L)  | NT) A/        | ASHTO T 324                                                 |                    |    |
|                                                                |           | 1 (           | Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Test                      |             | $\sim$                        |                                              |                          |                                                                  |                        | 1 (                     | Validati | on Test       |                                                             |                    |    |
|                                                                |           | <b>T</b> /    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Da                          | ate Sample  | 11/04/15                      | )                                            |                          | Project                                                          |                        |                         |          | Pate          | Sampled                                                     | 57                 |    |
| Mix Type                                                       | Inc       | cidental Pavi | ina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.                          | te oumpio   |                               |                                              |                          | Mix Type                                                         | Inc                    | idental Pavi            | na       | Duto          | oumpied                                                     | ~ ~                |    |
| Contractor Mix Number                                          |           | XV7           | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .IM                         | E Seq. No.  | 999                           |                                              |                          | Contractor Mix Number                                            | inc                    | YV7                     | 'g       | .IME          | Sea No 999                                                  | 1                  |    |
| Plant / Plant Code                                             | Lu        | cille         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ma                          | y Sn Grav   | 2 432                         |                                              |                          | Plant / Plant Code                                               | Luc                    |                         | 0        | Max           | Sp. Gray                                                    |                    |    |
| Flant / Flant Code                                             | Lu        | CIIIC         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IVIC.                       | x. op. orav | 2.432                         |                                              |                          | Fiant / Fiant Code                                               | Luc                    | , IIIC                  | 0        | WIGA.         | Sp. Glav.                                                   | 74                 |    |
|                                                                | 1         | 2             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                           | ]           | Left                          |                                              |                          |                                                                  | 1                      | 2                       | 3        | 4             |                                                             | eft                |    |
| A Weight in air (drv)                                          | 3926.6    | 3927.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | N           | Bricks: 18                    | 2                                            |                          | A Weight in air (drv)                                            |                        | ~                       | Ť        |               | Bricks                                                      | 182                | 1  |
| B Weight is water                                              | 2215.4    | 2214.8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | )5          | Ava Vods                      |                                              |                          | B Weight in water                                                |                        |                         |          |               | Ava, Voids                                                  | #DIV/01            |    |
| C Weight in air (SSD)                                          | 3951.9    | 3951.9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | 15          |                               |                                              |                          | C Weight in air (SSD)                                            |                        |                         |          |               |                                                             |                    |    |
| v Volume (C-D)                                                 | 1736.5    | 1737.1        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /                           | 1           | 1.00                          |                                              |                          | v Volume (C-B)                                                   |                        |                         |          |               |                                                             |                    |    |
| D Bulk Sp. Gr. (A/v)                                           | 2 201     | 2 261         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | 1           | Right                         |                                              |                          | D Bulk Sp. Gr. (A/v)                                             |                        |                         |          |               | R                                                           | ight               |    |
| % Max Theo, Gr. (D/E x100)                                     | 93.0      | 93.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | 1           | Bricks: 38                    | 4 7                                          |                          | F % Max Theo. Gr. (D/E x100)                                     |                        |                         |          |               | Bricks                                                      | 384                |    |
| H % Air Voids (100-F)                                          | 7.0       | 7.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | 1           | Avg. Voids: #DI               | V/0!                                         |                          | H % Air Voids (100-F)                                            |                        |                         |          |               | Avg. Voids                                                  | #DIV/0!            | 1  |
|                                                                |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |                               | /                                            |                          |                                                                  |                        |                         |          |               |                                                             |                    | 1  |
| Temp(°C):                                                      | (50)      | 8             | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Len                         |             | Pass Ric                      | tht                                          |                          | Temp(°C):                                                        |                        |                         | Pass     | Left          | Pass                                                        | Right              | 1  |
| Avg Rut (mm):                                                  | 2.51      | _             | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.29                        |             | 5000                          | 140                                          |                          | Avg Rut (mm):                                                    |                        |                         | 5000     |               | 5000                                                        |                    | 1  |
| At Pass:                                                       | 20000     | 9             | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.60                        | 1 4 4       | 7500                          | 17                                           |                          | At Pass:                                                         |                        |                         | 7500     |               | 7500                                                        |                    |    |
| Results(Pass/Fail):                                            | PASS      |               | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.70                        | 111         | 1000                          |                                              |                          | Results(Pass/Fail):                                              |                        |                         | 10000    |               | 10000                                                       |                    |    |
|                                                                | $\smile$  | 10            | 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.04                        |             | 15000                         |                                              |                          |                                                                  |                        |                         | 15000    |               | 15000                                                       |                    |    |
| Date Tested:                                                   | 11/5/2015 |               | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.51                        |             | 20000                         |                                              |                          | Date Tested:                                                     |                        |                         | 20000    |               | 20000                                                       |                    |    |
| Pomarks:                                                       |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sim$                      |             |                               |                                              |                          | Domarke                                                          |                        |                         |          |               |                                                             |                    |    |
| Remarks.                                                       |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |                               |                                              |                          | Kentarka.                                                        |                        |                         |          |               |                                                             |                    | _  |
| Tested by:                                                     |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |                               |                                              |                          | Tested by:                                                       |                        |                         |          |               |                                                             |                    |    |
| Chooked by:                                                    |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |                               |                                              |                          | Checked by                                                       |                        |                         |          |               |                                                             |                    |    |
| Checked by.                                                    |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                           |             |                               |                                              |                          | Griecked by.                                                     |                        |                         |          |               |                                                             |                    |    |
|                                                                |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |                               |                                              |                          |                                                                  |                        |                         |          |               |                                                             |                    |    |
| Pave 502 v16.03.18                                             |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |                               | 6/2/2016                                     |                          | LaPave 502 v16.03.18                                             |                        |                         |          |               |                                                             |                    | 6/ |
|                                                                |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |                               |                                              |                          |                                                                  |                        |                         |          |               |                                                             |                    |    |
|                                                                |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |                               |                                              |                          |                                                                  |                        |                         |          |               |                                                             |                    |    |
| TENCH E CTD                                                    | ENICTU    | DATIO         | (TCD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AACU                        | TO T 20     | 2 / DOTD T                    |                                              |                          | TENCH E CTOP                                                     | NOTU                   | DATIO                   | TCD)     | AACUT         | 0 T 202 / DOT                                               | D TD 31            |    |

| TENSILE ST                 | RENGTH  | RATIO        | (TSR)        | AASHT       | O T 283       | B/ DOTE     | 0 TR 322     |     | -     | TENSILE                   | STRENG   | STH RATIO     | (TSR)             | - AASHT        | O T 28   | 3/ DOTI    | D TR 322   | 2        |
|----------------------------|---------|--------------|--------------|-------------|---------------|-------------|--------------|-----|-------|---------------------------|----------|---------------|-------------------|----------------|----------|------------|------------|----------|
|                            |         |              | Desig        | n Test      |               | -           |              |     |       |                           |          |               | Validat           | ion Test       |          | -          |            |          |
|                            |         |              |              | Date        | e Sampled     |             |              |     |       |                           |          |               |                   | Dat            | e Sample |            |            |          |
| Mix Typ                    | e In    | cidental Par | ving         | 1           |               | -           |              |     |       | Mix T                     | Type     | Incidental Pa | wing              | 1              |          |            | · 1        |          |
| Contractor Mix Number      | r       | XVZ          |              | JMF         | Seg. No.      | 999         |              |     |       | Contractor Mix Nun        | nber     | XVZ           |                   | JMF            | Seg. No. | 999        |            |          |
| Plant / Plant Cod          | e Lu    | cille        | 0            | Max         | Sp. Grav.     | 2.432       |              |     |       | Plant / Plant C           | Code     | Lucille       | 0                 | Max            | Sp. Grav |            |            |          |
|                            |         |              |              |             |               |             |              |     |       |                           |          |               |                   |                |          |            |            |          |
|                            | 1       | 2            | 3            | 4           | 5             | 6           | 7            | 8   |       |                           | 1        | 2             | 3                 | 4              | 5        | 6          | 7          | 8        |
|                            |         | Cont         | rol Set      |             | M             | loisture Co | onditioned S | Set |       |                           |          | Cont          | trol Set          | _              | N        | loisture C | onditioned | Set      |
| A Weight in air (dry       | )       |              |              |             |               |             |              |     |       | A Weight in air           | (dry)    |               |                   |                |          |            |            |          |
| B Weight in wate           | r       |              |              |             |               |             |              |     |       | B Weight in w             | vater    |               |                   |                |          |            |            |          |
| C Weight in air (SSE       | ))      |              |              |             |               |             |              |     | -     | C Weight in air (S        | SSD)     |               |                   |                |          |            |            |          |
| v Volume (C-E              | 3)      |              |              |             |               |             |              |     |       | v Volume (                | C-B)     |               |                   |                |          |            |            |          |
| D Bulk Sp. Gr. (A/         | 0       |              |              |             |               |             |              |     |       | D Bulk Sp. Gr.            | (A/v)    |               |                   |                |          |            |            |          |
| % Max. Theo. Gr. (D/E x100 | ))      |              |              |             |               |             |              |     | 1     | F % Max. Theo. Gr. (D/E x | 100)     |               |                   |                |          |            |            |          |
| H % Air Voids (100-F       | 5       |              |              |             |               |             |              |     | 1     | H % Air Voids (10         | 0-F)     |               |                   |                |          |            |            |          |
|                            |         | -            |              |             |               |             |              |     | _     |                           | - //     |               | -                 |                |          |            | -          |          |
| Ava Voids (Contro          | D       | Ava V        | oids (Cond)  |             |               |             | Weight       |     |       | Ava Voids (Con            | (lont    | Ave \         | oids (Cond)       |                |          |            | Weight     |          |
| Ang. Volus (Contro         | <u></u> | _ rug. v     | olus (collu) |             |               |             | # Blows      |     | -     | Aig. Volus (coli          |          | (ig. i        | olus (colla)      | ·              |          |            | # Blows    |          |
|                            |         | AFTER V      | ACHUMICO     | NDITIONI    | NG            |             | # Diows      |     | -     |                           |          | AFTER         |                   | ONDITIONI      | NG       |            | # DIOWS    |          |
|                            | 1       | 2            | 3            |             | 5             | 6           | 7            | 8   |       | r                         | 1        | 2             | 3                 |                | 5        | 6          | 7          | 8        |
| G Weight in air (SSD       | ))      | -            |              | -           |               |             |              |     | 2     | G Weight in air (S        | SD)      |               |                   | -              |          |            | -          | -        |
| I Weight in Wate           | r       |              |              | 1           |               |             |              |     |       | I Weight in W             | later    |               |                   | 1              |          |            |            |          |
| V Volume (G                | DV      |              |              |             |               |             |              |     |       | V Volume                  | (GJ)     |               |                   |                | 1        |            |            | -        |
| Vol Abs Water cc (G.A      | 3       | +            | <u> </u>     |             | -             |             | <u>   </u>   |     | 1     | W Vol Abs Water cc (      | GAL      |               |                   |                | 1        |            |            | <u> </u> |
| Vol. Air Voide (Hv/100     | N       | <u> </u>     |              |             | ÷             |             |              |     | -     | Wy Vol. Air Voide (Hy)    | 100)     |               |                   |                |          |            | -          |          |
| N % Sat (100M/A6           | 2       |              | <u> </u>     |             | -             | -           |              |     | -     | N % Sat (1001A)           | 1001     |               | -                 | -              | -        |            | -          | -        |
| 14 70 Gat [1004474]        | 2       |              |              |             |               |             |              |     |       | 14 70 Gat (1004)          |          |               |                   |                |          |            |            |          |
|                            |         | INDI         | RECT TENSIL  | LE TESTING  |               |             |              |     |       |                           |          | IND           | RECT TENSI        | LE TESTING     |          |            |            |          |
|                            | 1       | 2            | 3            | 4           | 5             | 6           | 7            | 8   |       |                           | 1        | 2             | 3                 | 4              | 5        | 6          | 7          | 8        |
| D                          | 1       |              |              | 1           |               | 0           |              |     |       |                           | D1       |               |                   |                | 0        | 0          |            |          |
| Specimen D                 | 2       |              |              | Ĩ.          | <u>[</u> ] [] |             |              |     | 4     | Speciman                  | D2       |               |                   | Ĩ.             |          |            |            |          |
| Diameter                   |         | r            |              |             |               |             |              |     |       | Diameter                  | D        |               | 1                 |                |          |            | r          |          |
| Т                          | 1       |              |              |             |               |             |              |     |       |                           | T1       |               |                   |                | 1        |            |            |          |
| pecimen T                  | 2       |              |              |             | 1 1           |             |              |     | 5     | Speciman                  | T2       |               |                   |                |          |            |            |          |
| nickness T                 | 3       |              |              |             |               |             |              |     |       | Thickness                 | T3       |               |                   |                |          |            |            |          |
|                            | Т       |              |              | -           |               |             |              |     | 1     |                           | T        |               |                   |                |          |            |            |          |
| Dial Readin                | a       |              |              | -           | 10            |             |              |     |       | Dial Rea                  | dina     |               |                   |                |          |            |            |          |
| P Maximum Loa              | d       |              |              |             |               | -           |              |     | 6 & 7 | P Maximum I               | oad      |               |                   |                |          |            | 1          |          |
| S Strength (2P/pi*TC       | 0       |              |              |             | 11            |             |              |     |       | S Strength (2P/ni         | *TD)     |               | -                 |                |          |            |            |          |
| e onongen (Er /pi te       | 71      |              |              |             |               |             |              |     |       | e onongan (zi /pi         |          |               |                   |                |          |            | -          |          |
| Ava, Strength (Ctrl        | )       | 1            | D            | ate Tested  |               | 1           |              |     |       | Avg. Strength ((          | Ctrl.)   |               | [ [               | Date Tested    |          | 1          |            |          |
| Ava Strength (Cond         | 1       | 1            | Sam          | n Set I D   |               |             |              |     | -     | Ava Strength (Ca          | and )    | _             | Sar               | nn Set ID      |          |            |            | 1        |
| Avg. Strength (Cond        | 9       | 1            | Theo         | p. Set I.D. | Vee           |             |              |     | -     | Avg. Strength (Co         | TOD      | _             | Sar               | np. Set I.D.   | Vee      | -          | -          | -        |
| TO                         | 21      |              |              |             | X 0.0         |             |              |     |       | -                         | 1.70.001 |               | 11 13/10 man 8.41 | v Orohale(V/M) | x 0.0    |            |            |          |

# JMF Input

The JMF Input page is a combination of dropdown choices and manual entries. The version with the "Material Setup" tab will have more dropdown choices.

- 1. The header information is completed with a combination of dropdowns and manual data entry.
  - a. <u>Project No.</u> Information entered in the "Project" tab will appear in a dropdown. You may have to scroll up for the entered projects to be visible. <u>Project Name</u>, <u>Project Eng</u>. And <u>Contractor</u> will auto fill when the project number is chosen.
  - b. <u>Contr. Mix #</u> Manual input
  - c. <u>Mix Code</u> Dropdown for either English or Metric. Hopefully there are very few metric projects on the shelfs
  - d. <u>SMM P/S</u> Auto populate from the "Material Setup" tab cell B5
  - e. JMF No Manual input
  - f. <u>Design Level</u> Dropdown
  - g. <u>Use</u> Dropdown
  - h. Plant type Dropdown
  - i. Nom Agg Size Dropdown
  - j. <u>ADT</u> Auto populate from <u>Project No.</u> choice
  - k. Production Rate Manual entry
  - I. <u>Mix Temp</u> Manual entry
  - m. AC Corr Factor Auto populate from the "Comp. Grad. and FAA input" tab
  - n. ESAL Auto populate from Project No. choice
  - o. <u>Adj Fac</u> Calculated from the design  $G_{mm}$  and then from the validated  $G_{mm}$  after validation
  - p. SMM ID Created from GET SMM ID
  - q. Date Manual input
  - r. Design LWT Rut Auto populate from the "Moisture Susceptibility Design" tab
  - s. No. Passes Auto populate from the "Moisture Susceptibility Design" tab
- 2. The Aggregate Type and Consensus section of the "JMF Input" tab can be completed manually in older versions of LaPave or as a combination of dropdown and manual entry in the version of LaPave with the "Material Setup" tab
  - a. For versions of LaPave with the "Material Setup" tab, <u>choose the "Aggr Class" first</u>. <u>Aggregate Type</u> has a dropdown to choose each aggregate for a JMF. The <u>P/S Code</u>, <u>Bulk Gravity</u>, <u>Absorption</u>, <u>FAA</u>, <u>Sand Eq</u>., and <u>Flat & Elong %5:1</u> will auto populate from information entered on the "Material Setup" tab. Older versions of LaPave, all the above properties will have to be entered.
  - b. The " $\underline{\%}$ " of aggregate in a manual entry.
  - c. <u>% Ret No. 8</u> and <u>% Ret No. 4</u> auto populates from the "Comp. Grad. and FAA Input" tab

- d. <u>Aggr. Class</u> has dropdowns for Coarse, Fine, RAP and Other. If RAP is chosen, it will auto populate the "<u>%</u>" based on the data entered in the section containing <u>Rap 1</u> and <u>Rap 2</u>. Choosing Other will allow manual entry of the gradation for that particular aggregate on the "Comp. Grad. and FAA Input" tab.
- 3. <u>Material</u> In older versions of LaPave this is a manual entry. In the LaPave with the "Material Setup" the Asphalt and Anti-strip can be chosen from the dropdown from each. The <u>Asphalt Content from RAP</u> is auto populated from the data entered in <u>Rap 1</u> and <u>Rap 2</u>.
- 4. <u>Warm Mix</u> Warm Mix Yes/No dropdown, Method Water, Chemical or None dropdown, Rate manual entry, If Chemical Brand Name manual entry
- 5. Draindown Control Cellulose Fiber, Mineral Fiber, Crumb Rubber, and None from the dropdown
- 6. %Crushed, Comp. Temp, and SCB Jc are manual entries
- 7. Rap 1 and Rap 2 % Mix Rap Total and % AC in RAP are manual entries
- 8. Cold Feed and Avg Oven Extract Auto Populate from the Comp. Grad. and FAA Input tab
- 9. Validated Results Populated and tolerances applied from the "JMF" tab
- 10. IMPORT button Import all the JMF information from another LaPave file

🚺 🔒 🐬 🖑 ÷

Lapave 502\_newspec\_3-30-16-Instructions.xlsm - Excel

FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW React Delete Format 🚔 🔏 Cut • 10 • A A = = = ≫ • ₩rap Text ▼ ≠ Arial Copy 🔹 Sort & Find & Insert Delete Format v v v v v e Clear v Filter v Select v Formatting - Table -S Number Clipboard Fa . Font Alignment Styles Editing Cells → : × √ fx 1002M00220-Ad-Here LA 2 C25 A B C D E F G H I J K L M N O P Q R S T U V W X SUPERPAVE ASPHALTIC CONCRETE MIXTURES Project No. H234567 Mix Code 26-English JME No Traffic (ADT) ESAL 20,999 999 727 Plant Type 3-dryer drum Project Name Delta Blues Design Level A Prod. Rate 300 Adj.Fac 1.00 1 Nom Agg Size 0.5 in. Mix Temp Specs 2016 AC Corr Factor Project Eng. B.B. King Mix Type Incidental Paving 300 Date 6/2/2016 GET SMM ID Use Min - Shoulder > 7ft Design LWT Rut 0.43 2.51 Contractor Lucille SMM P/S PS00000520-Contractor Supplied Contr. Mix # xyz SMM ID 005601603100942 No. Passes 20000 FAA Sand Eq. Flat & Elong P/S Aggregate Bulk CAA Friction %Ret %Ret Aggr. 1 Absorption Method A - 4.75 mm Code Gravity %5:1 Rating No.8 No.4 IMPORT Туре Class 17.8 APS00007380 1003M00120-#68 LS 2.649 1 10 98.2 96.2 Coarse 2 PS00009999 1003M01000-Fine Cr RAP 19.1 2.595 1 51.1 36.8 Rap APS00009999 1003M03320 - Cr Gravel 23.8 2.18 45 95 111 65.6 414 2.497 Fine APS00009999 1003M03270 - Cr Stone #1 27.0 2 642 1.01 47 100 111 14.9 0.0 Fine APS00009999 1003M00110- Sand 2.631 39 94 12.3 0.4 0.2 0.1 Fine 18 19 20 4 100 ( 21 Material % Source Code Sp. Gravity Warm Mix Asphalt Gyr. Rev Asphalt APS00000510 1002M00040-Valero 70-22m Nini 4.3 1.03 Warm Mix Yes 7 Asphalt Content from RAP 0.9 1.03 Method Water Ndes 65 Anti-strip APS00003920 1002M00220-Ad-Here LA 2 0.6 Rate 2.00% Nmax 100 25 If Chemical 26 Cold Feed Avg Oven Extract 27 Validated Results Brand Name 0 9 28 Sieve % Passing % Passing % Passing Tolerance O 29 2" 50 Draindown Control 100 100 100 5 30 1.5" 37.5 100 100 Туре 31 1" 100 100 Rate 32 3/4" 19 100 100 If Chemical ---33 1/2" 12.5 Brand Name 96 96 ---34 3/8" 9.5 86 88 ---35 #4 4.75 66 67 %Nat Sand 0 ---PSG 1.03 36 **#8 2.36** 37 **#16 1.18** Rap 1 Rap 2 53 51 correct rap agg% n ---39 36 %Design AC Туре ---J.2 38 **#30 0.6** 28 26 %Crushe 96 % MixRapTota 20.0 ---D % AC in RAP 39 **#50 0.3** 14 15 G<sub>sb</sub>av 2.597 4.3 ---40 #100 0.15 % MixRap Agg 6 9 Comp Tem 295 ---19. 0.74 0.9 % MixRap AC 41 #200 0.075 44 5.9 SCB J ---42 43 Extracted %A 5.2 44 45 46 Remarks: 47 LaPave 502 v16.03.18 6/3/2016 10 🔹 🔸 .... Material Setup Project Optimum AC Test Results Comp. Grad. and FAA Input Moisture Susceptibility Design JMF Input JMF UMF CHECK .... 🛞 : 🔄 Þ READY 

# <u>JMF</u>

For the most part, the "JMF" tab auto populates. The signature area has some input as well as the Remarks section.

- 1. The header section auto populates based on the project selected and the design information input on the "JMF Input" tab
- 2. The aggregates, bin percentages, properties and source codes auto populate from the "JMF Input" tab.
- 3. Composite averages are calculated and shown on the "JMF" tab
- 4. Asphalt Cement and Additives are auto populated from the "JMF Input" tab
- 5. LWT and SCB Jc value are displayed in this section

| X Cut            | Helv               | ~ 8         | • A        | A* = =               | 8/-         | Wrap Text   | Numbe      | er         | -                  |               | Normal 1  | 10 N       | ormal 10 2    | Normal    | 11          | Norma    |
|------------------|--------------------|-------------|------------|----------------------|-------------|-------------|------------|------------|--------------------|---------------|-----------|------------|---------------|-----------|-------------|----------|
| Copy             | BIU-               | 1.          | 8 - A      |                      | € +=        | Herge & Cen | ter - \$ - | % , *:0    | .00 Condition      | nal Format as | Normal    | 12.2 N     | ormal 13      | Normal    | 13 2        | Norm     |
| lipboard 5       |                    | Font        |            | 6                    | Alignme     | nt          | G 1        | Number     | Formattin<br>G     | g * Table *   |           |            |               | Styles    |             |          |
| • : 🗙            | √ fx               | =Va         | lidation!H | 17                   |             |             |            |            |                    |               |           |            |               |           |             |          |
| ABC              | DE                 | F           | GH         | IJ                   | к           | Formula Bar | М          | NO         | PQ                 | R             | S         | τv         | wx            | Y Z AA    | AB          | AC       |
|                  |                    |             |            | Louis                | iana D      | epartme     | nt of Tra  | nsport     | ation and          | Deve          | lopme     | nt         | 100100        |           |             |          |
|                  |                    |             |            |                      | ME SUP      | FRPAVE      | ASPHAL     | TIC CO     | NCRETE             | MIXTU         | RES       |            |               |           |             |          |
| N<br>Project No. | Aetric/Engl<br>H23 | ish<br>4567 | E          | F                    | Plant Code  | PS00000     | 520-Contr  | ractor Su  | pplied             |               |           |            | SMM ID        | 005601    | 16031       | 0094     |
| Specs 2016       |                    | Plant T     | ype        | 3-dryer d            | rum         | 1           | Mix Type   | Incider    | tal Paving         | Mix Use       | Min - S   | Shoulder > | 7ft           | Des.Level | 1           | A        |
| SAL 20,9         | 99                 | Pr          | od.Rate    | 300                  |             | -           | Mix Temp   | 300        |                    |               |           |            |               | Seq No    | 1           | 999      |
| Adj. Factor      | 1.00               |             |            | ADT/lane             | 7           | 27          | Nom        | Agg.Size   | 0.5 in.            |               | AC Cor    | Factor     | 0.43          |           |             | _        |
| Project Name     |                    | Delt        | ta Blues   |                      | Project Co  | ont.        |            | Lucille    |                    |               | Project   | Engr       | 1             | 3.B. King |             | -        |
|                  |                    |             |            |                      | Міх Туре    |             | Incident   | tal Paving |                    |               | Mix Use   | Mi         | n - Shoul     | der > 7ft |             |          |
| agregate         |                    | _           |            |                      |             |             |            |            |                    |               |           |            |               |           |             | -        |
| Material         | Source (           | Code        |            |                      | Aggr. Ty    | /pe         |            | Aggr. %    | Bulk Sp Gr,<br>Gsb | Abs.          | FAA       | Sand Eq    | Flata<br>Elon |           | Fr.<br>Rate | %R       |
| Cr. Aggr         | APS0000            | 7380        | 1003M00    | 0120- <b>#</b> 68 LS |             |             |            | 17.8       | 2.649              | 1             |           |            | 1             | _         |             |          |
| RAP Aggr         | PS00009            | 9999        | 1003M01    | 1000-Fine Cr         | RAP         |             |            | 19.1       | 2.595              | 1             |           |            |               | _         |             |          |
| Fine Aggr        | APS0000            | 9999        | 1003M03    | 3320 - Cr Grav       | vel         |             |            | 23.8       | 2.497              | 2.18          | 45        |            |               | 95        |             |          |
| Fine Aggr        | APS0000            | 9999        | 1003M03    | 3270 - Cr Stor       | ne #1       |             |            | 27.0       | 2.642              | 1.01          | 47        |            |               | 100       |             | <u> </u> |
| Fine Aggr        | APSUUU             | 19999       | 1003M0     | JIIU-Sand            |             |             |            | 12.3       | 2.631              | 0.4           | 39        | 94         |               | _         |             | +        |
|                  |                    |             |            |                      |             |             |            |            |                    |               |           |            | -             | -         |             | +        |
|                  |                    |             |            |                      |             |             |            |            |                    |               | <u> </u>  |            | -             |           |             | +        |
|                  |                    |             |            |                      |             |             |            |            |                    |               |           |            |               |           |             | +        |
|                  |                    |             |            |                      |             |             |            | D          |                    |               |           |            |               |           |             | +        |
| Composite        |                    |             |            |                      |             |             |            | GSB        | 2.597              | 1.21          | 44        | 94         | 1.0           | 96        | 1           |          |
|                  |                    |             |            |                      |             |             |            | <u></u>    |                    |               |           |            |               |           |             |          |
|                  |                    |             | A          | sphalt Cemer         | nt and Addi | tives       |            |            |                    |               |           | Load       | ed Wheel      | Test      |             |          |
| Material         |                    | Sour        | ce         |                      |             | Material    |            |            | % of Mix           | 6             |           |            |               |           |             |          |
| material         |                    | Cod         | e          |                      |             | Name        | -          |            | 70 UT MIX          |               | Design:   |            | No. P         | asses     | 200         | 000      |
| Asphalt Ceme     | nt A               | PS0000      | 00510      | 1002M00040-          | Valero 70-  | 22m         | 4          |            | 4.3                |               |           | 5          |               | Rut       | 2.          | 51       |
| Rap Asphalt      |                    |             |            |                      |             |             | -          |            | 0.9                |               | 8/3103352 | 9          |               |           |             |          |
| Anti Strip       | A                  | PS0000      | 03920      | 1002M00220-          | Ad-Here L   | A 2         |            |            | 0.6                |               | Validati  | on:        | No. P         | asses     |             | 0        |
|                  |                    |             |            |                      |             |             |            |            |                    |               |           |            |               | Rut       |             | _        |
|                  |                    |             |            |                      |             |             |            |            |                    |               | SCB Jc    | 0.74       |               |           |             |          |

- 6. JMF values from the mix design
- 7. JMF average values from the validation
- 8. The standard deviation of each parameter from validation data
- 9. PWL from the validation data
- 10. Specification limits based on validation averages
- 11. Submittal and approval area
- 12. Remarks

| <ul> <li>✗ Cut</li> <li>Image: Copy →</li> <li>✓ Format Painter</li> </ul> | Helv<br>B I U | -   B  | • 8 • A      | А, - |            | · •   | Wrap  | o Te<br>ge & | xt<br>& Center | •     | \$•% > | ← 0 00<br>← 0<br>← |           |        |
|----------------------------------------------------------------------------|---------------|--------|--------------|------|------------|-------|-------|--------------|----------------|-------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|
| Clipboard 15                                                               |               | For    | nt           | 6    |            | Aligr | nment |              |                | 6     | Numbe  | er Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Styles    |        |
| A B C                                                                      | × √ ƒ         | x G F  |              |      | K OI       |       |       |              | N O            | 4     | •      | R S T V W X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y 7 AA AB | AC     |
| N D O                                                                      | 6             | 0      | 17           |      | Ŏ          |       | 9     |              |                |       | U      | N O I V W X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/11/10  | No     |
| DESIGN                                                                     | DATA          |        | -            | VALI | DATION DAT | A     | J     |              | JM             | - Lim | its    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| Parameter                                                                  | Submittel     |        | Average      |      | Std. Dev   |       | PWL   |              | (per v         | alid  | avg)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| Gmm                                                                        | 2.406         |        | 2.414        |      | 0.00114    |       | 100   |              | 2.399          | -     | 2.429  | Submitted for Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | By:       |        |
| %Gmm,Nini                                                                  | 87.1          |        | 87.5         |      | 0.517      |       | 100   |              |                |       | 90     | Date Submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/14/16  | 6      |
| %Gmm,Nmax                                                                  | 97.2          |        | 97.2         |      | 0.618      |       | 100   |              |                | -     | 98     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| VMA                                                                        | 14.1          |        | 13.8         |      | 0.297      |       | 100   |              | 13.0           | -     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| VFA                                                                        | 75            | $\top$ | 74           |      | 1.92       |       | 100   |              | 69             | -     | 80     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| % Voids                                                                    | 3.5           |        | 3.6          |      | 0.377      |       | 100   |              | 2.5            | -     | 4.5    | Technicia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n         | -      |
| % Design AC                                                                | 5.1           |        |              |      |            |       |       |              |                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| Comp Temp                                                                  | 300           |        | 297          |      | 2.74       |       | 100   |              | 272            | -     | 322    | Proposal Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y=Yes     |        |
| % DF Crushed                                                               | 99            |        | 99           |      | 1.52       |       |       |              | 98             | -     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N=No      |        |
| 1/2 (37.5mm)                                                               | 100           |        | 100          |      | 0.00       |       | -     |              | 96             | -     | 100    | By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |        |
| 1 in (25mm)                                                                | 100           |        | 100          |      | 0.00       |       | -     |              | 96             | -     | 100    | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |        |
| 3/4 (19mm)                                                                 | 100           |        | 100          |      | 0.00       |       | -     | T            | 96             | -     | 100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| /2in (12.5mm)                                                              | 96            | +      | 95           | +    | 1.47       | Ħ     | 100   | Ħ            | 91             | -     | 99     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| 3/8in (9.5mm)                                                              | 78            | +      | 79           |      | 2.66       | H     | 94    | H            | 75             | -     | 83     | Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e         | -      |
| lo. 4 (4.75mm)                                                             | 45            | +      | 45           |      | 1.67       | 11    | 100   | H            | 41             | -     | 49     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| No. 8(2.38mm)                                                              | 30            | +      | 30           | +    | 0.96       | Ħ     | 100   | Ħ            | 27             | -     | 33     | Validation Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y=Yes     |        |
| lo.16(1.18mm)                                                              | 20            | +      | 21           |      | 0.43       | Ħ     | 100   | Ħ            | 19             | -     | 23     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N=No      |        |
| No.30(600um)                                                               | 15            |        | 16           |      | 0.45       |       | 100   | Ħ            | 14             | -     | 18     | By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |
| No.50(300um)                                                               | 11            |        | 12           |      | 0.48       |       | 100   | I            | 10             | -     | 14     | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |        |
| No100(150um)                                                               | 8             |        | 8            |      | 0.34       |       | 100   |              | 6              | -     | 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| No. 200(75um)                                                              | 5.4           | +      | 6.0          |      | 0.217      | 11    | 100   | Ħ            | 5.3            | -     | 6.7    | Number of Validation A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ttempts   |        |
| 6 AC Extracted                                                             | 5.1           | $\top$ | 5.2          |      | 0.089      |       | 100   |              | 5.0            | -     | 5.4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | (y/i   |
| Dust/Pbeff                                                                 | 1.17          |        | 1.33         |      | 0.0485     |       | 100   |              | 0.6            | -     | 1.6    | LWT = PASS .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |        |
| Gse                                                                        | 2.601         |        | 2.602        |      | 0.00114    |       |       |              |                |       |        | Each PWL Paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r ≥ 90    |        |
| Pba                                                                        | 0.55          |        | 0.60         |      | 0.0000     |       |       |              |                | ٥.0 غ |        | Avg. within JMF spec. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | imits     |        |
| Pbe                                                                        | 4.6           |        | 4.5          |      | 0.000      |       |       |              |                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
|                                                                            |               | -      |              | _    |            |       |       | -            |                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |
| Remarks: S                                                                 | CB Test - PC  | 676-2  | 2M = 0.71.Jc |      |            |       |       |              |                |       |        | Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | By        | -      |
|                                                                            |               |        |              |      |            |       |       |              |                | 9     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -,        |        |
|                                                                            |               |        |              |      |            |       |       | T            |                |       |        | Date First Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 1      |
| ×                                                                          |               | -      |              | -    |            | -     |       | -            | _              |       |        | out introdu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |        |
| aPave 2013 v1                                                              | 3 04 24       | -      |              | 1 -  |            | -     |       | +            |                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 6/7/20 |
| ur ave 2010 VI                                                             | 0.04.24       | -      |              |      |            | -     |       | ÷            |                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 5///20 |
|                                                                            |               |        |              |      |            |       |       | _            |                |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |

# JMF CHECK

- 1. Header area is auto populated from the "JMF Input" tab
- 2. The aggregate section is auto populated from the "JMF Input" tab with the Apparent Gravity calculated on this sheet.
- 3. Percent Virgin AC, Percent RAP AC and anti-strip rate. This is auto populated from the "JMF Input" tab.
- 4. Average Volumetrics for the most part pulls from the Optimum AC Test Results. VFA is calculated on optimum voids (3.5 for most mixes) not the voids of the design gyratory briqs.
- 5. Shows the composite gradation from the cold feeds, the furnace extraction gradation & the average gradation from the validation with tolerances.
- 6. Warm mix information pulled from the "JMF Input" tab
- 7. Drainwdown Control information pulled from the "JMF Input" tab
- 8. Information for up to two RAP cold feeds. The overall percentage of RAP including AC, the residual %AC of the RAP, the aggregate credit to the mix and the %AC credit to the mix.
- 9. The average rut from the LWT is pulled from the "Moisture Susceptibility Design" tab
- 10. TSR information if this option is used for minor mixes is pulled from the "Moisture Susceptibility Design" tab
- 11. The N<sub>ini</sub>, N<sub>des</sub>, and N<sub>max</sub> gyrations are pulled from the "JMF Input" tab. The type and design level of the mix chosen on the "JMF Input" tab determines these numbers

|                                                                                         |                        |                     |           |             | JN              | IF SUP     | PERPAN        | E FOR                | M           |              |        |              |      |          |
|-----------------------------------------------------------------------------------------|------------------------|---------------------|-----------|-------------|-----------------|------------|---------------|----------------------|-------------|--------------|--------|--------------|------|----------|
| Project No.                                                                             | HOODOO                 | MixCod              | e 26      | JME No.     |                 | 1          | Plant Code    | HOOD                 | 1 1         |              | 4567   | ,            |      | -        |
| Project Name                                                                            | 11000000               | abcdef              | e 20      | Design Leve | 1               | Plant Type | 3-drue        | er drum              |             | Prod. Rate   | 300    |              |      |          |
| Project Eng                                                                             |                        | JDoe                | Mix Type  | Wearin      | q Course        | No         | m Aqq Size    | 0.5 in.              |             | Mix Temp     | 300    |              |      | -        |
| Submitted                                                                               | 803<br>111             | ad Builders         | Mix Use   | ML-1        | Vearing<br>AC C | orr Factor | Specs<br>0.53 | 2013                 | -           | Date         | 6/8/20 | 16           |      |          |
| Source                                                                                  | Source                 | Aggregate           | Mat'l     | ×           | Apparen         | Bulk       | Abs.          | FAA                  | Sand Eq     | lat & Elon   | CAA    | FB           | ZBel | 21       |
| Code                                                                                    |                        | Type                | Code      |             | Gravity         | Gravity    |               | Method               | 4.75 mm     | %5:1         |        |              | No.8 | N        |
| BBBB                                                                                    | MM                     | # 78                | 834       | 56.2        | 2.656           | 2.556      | 1.48          | 46                   |             | 1.1          | 100    | 1            | 93   | 8        |
| RP00                                                                                    | Contracte              | or [. Crush R/      | F 840     | 19.1        | 2.597           | 2.597      |               |                      | -           |              |        | 3            | 47   | -        |
| AAAA                                                                                    | Pit Grave              | Las Crush           | 024       | 13.Z        | 2.642           | 2.497      | 2.20          | 45                   |             |              | 35     | 3            | 15   | -        |
|                                                                                         | mm                     | Mail Salid          | 034       | 11.5        | 2.714           | 2.042      | 1.01          |                      |             |              | 100    | 3            | 15   | _        |
|                                                                                         |                        |                     | -         |             |                 |            |               |                      | -           |              |        |              |      | _        |
|                                                                                         |                        |                     | -         |             |                 |            |               |                      |             |              |        |              |      | _        |
| Combined                                                                                | Aggregat               | es Propertie        | s         | 100.0       | 2.670           | 2.565      | 1.53          | 46                   |             | 1.1          | 99.3   |              |      | _        |
|                                                                                         | C Gra                  | de Material         | Hat'l Cad | Sourc       | e Name          | ×          | Sp. Gravi     | ity                  | V           | arn Mix Aspl | halt   |              | _    |          |
| Asphalt                                                                                 | - DR                   | PG76-22N            | 660       | ¥a          | lero            | 4.2        | 1.03          |                      | arm Mi      | Ye           | s      |              |      |          |
| .sp. fm. RA                                                                             | F 00                   | Crush R/            | LF        | Cont        | ractor          | 0.9        | 1.03          |                      | Method      | Wat          | er     |              |      | -        |
| Anti-strip                                                                              | 5730                   | Ad-Here L/          | 105       | ArrMaz      | Chemical        | 0.6        |               |                      | Rate        | 2.00         | 02     |              |      | _        |
| 8 Design S                                                                              | ubmitted               | by Contract         | or        |             |                 |            |               |                      | Provid Hour |              |        |              |      |          |
| Average Vo                                                                              | lumetrics              |                     | Cold Fee  | TQ OTEN     | Extrac          | Validate   | d Results     |                      | Dr          | aindown Con  | trol   | 5            |      |          |
|                                                                                         |                        | Si                  | 2 Passia  | 2 Pass      | ing             | 2 Passing  | Tolerance     |                      | Fibers      | Nor          | ne     |              | -    |          |
| 2 C nm                                                                                  | 2.406                  |                     | 100       | 100         |                 | 100        |               |                      |             |              |        |              |      |          |
| Gmm Nm                                                                                  | 97.2                   | H - 🤐               | 100       | 100         |                 | 100        | 96 100        |                      | Rate        |              |        |              |      |          |
| Sab@Des co                                                                              | 2.322                  | 8/4- 1              | 9 100     | 100         |                 | 100        | 36 100        |                      | President   |              |        |              |      |          |
| VMA                                                                                     | 14.1                   | 12- 12.             | 5 95      | 96          | _               | 35         | 91 99         |                      |             |              |        |              |      |          |
| VFA                                                                                     | 75                     | 3/8" 9.1            | 5 76      | 78          |                 | 79         | 75 83         |                      |             | Rap 1        | Rap 2  |              | -    |          |
| 3 %¥oids                                                                                | 3.5                    | 14 4.7              | 5 42      | 45          |                 | 45         | 41 49         |                      | Туре        | F. Crush RAP |        |              | O    |          |
| 3 %DesignA(                                                                             | 5.1                    | 8 2.3               | 6 29      | 30          |                 | 30         | 27 33         |                      | Percent     | 20.0         |        |              |      | -        |
| Gsb agg                                                                                 | 2.565                  | <b>16</b> 1.18      | 20        | 20          |                 | 21         | 19 23         |                      | Residual    | 4.3          |        |              |      | <u> </u> |
| Cruchod                                                                                 | 300                    | 50 0.               | 2 10      | 15          | _               | 10         | 14 18         |                      | Agg Z       | 19.1         |        |              |      | -        |
| dust/Peff                                                                               | 1.17                   | 100 0.1             | 5 7       | 8           | _               | 8          | 6 10          |                      | Thap ACA    | 0.3          |        | /            |      |          |
| Gse                                                                                     | 2.601                  | 200 0.07            | 5 4.5     | 5.4         |                 | 6.0        | 5.3 6.7       |                      |             |              |        |              |      |          |
| Pabsorb                                                                                 | 0.55                   | Extracted           | AC .      | 5.1         |                 | 5.2        | 5 5.4         |                      |             |              |        |              |      |          |
| Pbe                                                                                     | 4.6                    |                     |           |             |                 |            |               | )                    |             |              |        |              |      |          |
| 8 AASHTO                                                                                | r32 <b>4</b>           |                     |           |             |                 |            | AASHT         | D T283 a:            | s modifie   | d by PP28    | ſ      | Nini         | Gyr. | R        |
| 0 Averag                                                                                | e Rut (mr<br>(Pass/Fai | n) 3.23<br>il) PASS |           |             |                 |            | Co<br>Desi    | ntrol PSI<br>gn TSR% |             | J            |        | Ndes<br>Nmax | 6    | 5        |
| 3<br>4 Proposal a                                                                       | proved by              | 0                   |           |             |                 |            | 1             | 0                    | Date:       |              |        |              | 4    |          |
| s<br>6 Validation a                                                                     | approved b             | y: 💙                |           |             |                 |            | _             | LU                   | Date:       |              |        | _            | L    |          |
| -                                                                                       | or contract            | tor                 | -         | -           |                 |            |               | -                    | Date:       |              |        | -            |      |          |
| 7<br>8 Submitted I                                                                      |                        |                     | 71 Jo     |             |                 |            |               |                      |             |              |        | _            | _    | _        |
| 7<br>8 Submitted I<br>9<br>0 Remarks                                                    | SCB Test               | - PG76-22M = 0.     |           |             |                 |            |               |                      |             |              |        |              |      |          |
| 7<br>8 Submitted 1<br>9<br>0 Remarks<br>1<br>2 ZaPare 2015 1<br>3                       | SCB Test               | - PG76-22M = 0.     |           |             |                 |            |               |                      |             |              |        |              | 6/7  | 7.2      |
| 7<br>8 Submitted I<br>9<br>0 Remarks<br>1<br>2 <i>LaPare 2015</i> 1<br>3<br>4<br>5<br>5 | SCB Test               | - PG76-22M = 0.     |           |             |                 |            |               |                      |             |              |        |              | 6/7  | 72       |

# Validation Input

- 1. The header information is a combination of auto population and user input.
  - a. <u>Proj. No.</u> Choose a project from the drop down that was entered on the "Project" tab. <u>Proj. Name</u> will auto populate from information entered on the "Project Tab"
  - b. Lot Size The tonnage in the Validation Lot. Between 1000 and 2000 tons.
  - c. <u>No. Sublots</u> Populated from the number of Rice gravities entered
  - d. <u>SMM P/S</u> Populated from the "JMF Input" tab which is pulled from the "Material Setup" tab
  - e. <u>JMF No</u>. Populated from the "JMF Input" tab
  - f. Start & End Date Manual Input
  - g. <u>%AC</u> Populated from the "JMF Input" tab
  - h. Design Level Populated from the "JMF Input" tab
  - i. <u>Gsb</u> Composite bulk gravity of aggregates auto populated from the "JMF CHECK" tab
  - j. <u>Mix Type & Mix Use</u> Drop down choices that should correlate to the design level choices made on the "JMF Input" tab for the same fields
  - k. <u>Ps</u> Percent stone (aggregate) = 100 %AC
  - I. <u>SMM ID</u> Generated and pulled from the "JMF Input" tab
  - m. AC Corr Factor Is determined on the "Comp. Grad. and FAA Input" tab
- 3. Individual G<sub>mm</sub> results
- 4. Air, Water, SSD weights and heights for  $N_{\text{des}}$  and  $N_{\text{max}}$  briqs
- 5. The percent virgin AC metered rate, compaction temperature of the sample, tonnage in the validation lot the sample was taken, Mix Temp in the haul truck, and the antistrip rate
- 6. Scale to scale %AC data entry, aggregate for gradation weights and weight of crushed aggregate
- 7. Gradation weights with decant loss calculation and percent passing calculation
- 8. Repeat for the rest of the validation sublots
- 9. Roadway Density Cores Under the 2016 spec, the contractor or DOTD make take **informational** cores to check for density. The acceptance cores will come from the 37,500' roadway lot on the project.

| А           | B          | С                                       | D          | E               | F           | G         |                 | Н           | 1            | J           | К              | L           | М             | N           | 0            | Р                                     | Q            | R       |
|-------------|------------|-----------------------------------------|------------|-----------------|-------------|-----------|-----------------|-------------|--------------|-------------|----------------|-------------|---------------|-------------|--------------|---------------------------------------|--------------|---------|
|             |            |                                         |            |                 |             |           | VAL             | IDATION     | J            |             |                |             |               |             |              |                                       |              |         |
| Proj. No.   | HC         | 000000                                  | Plan       | H000            | 0           | Design le | evel            | 1           | Mix Type     | Wearin      | g Course       | Purp.Code   |               | DATE        |              |                                       |              |         |
| Proj. Name. | a          | bcdef                                   | JMF No     |                 | Lot No.     | 111-      | 01              |             | Mix Use      | ML - V      | Vearing        |             |               | -           |              |                                       |              |         |
| Lot Size    |            |                                         | Start Date | 6/1/2016        | 808-8004-84 | End D     | ate             | 6/2/2016    |              |             |                |             |               | 1           |              |                                       |              |         |
| No Sublots  | 5          | %AC                                     | 5.1        |                 | Gab         | 2 56      | 55              |             | P.           | 94.9        | AC             | Corr Factor | 0.53          | _           |              |                                       |              |         |
|             | <u> </u>   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            |                 | -50         | 2.00      |                 |             | . 5          | 01.0        |                |             | 0.00          |             |              |                                       |              |         |
|             |            |                                         |            |                 |             | _         |                 |             |              |             |                |             |               |             |              |                                       |              |         |
| - (         | [          | Theoretical Ma                          | ximum Sp   | ecific Gravity. | Gmm "Ric    | e" Sam    | nple 1          |             |              | Τ           | heoretical Ma  | ximum Spe   | cific Gravity | Gmm "Ric    | e" Sample    | 2                                     |              |         |
|             |            |                                         | A          | В               | C           | D         |                 | E           | 1            |             |                | A           | B             | C           | D            | E                                     |              |         |
|             | Wt of Mix  |                                         | 1835.0     | 1938.1          | 1749.9      | 1725      | 5.6             | 1787.2      |              | Wt of Mix   |                | 1967.1      | 1850.0        | 1715.2      | 1852.2       | 1786.6                                |              |         |
|             | Wt of Pyc  | & H2O                                   | 1396.6     | 1393.1          | 1393.1      | 1393      | 3.5             | 1393.5      | _            | Wt of Pyc 8 | & H2O          | 1459.2      | 1458.7        | 1458.7      | 1458.9       | 1458.9                                |              |         |
|             | Wt of Pyc, | H2O & Mix                               | 2469.6     | 2527.0          | 2418.0      | 2403      | 3.9             | 2441.0      |              | Wt of Pyc,  | H2O & Mix      | 2614.1      | 2543.3        | 2462.9      | 2544.1       | 2505.6                                |              |         |
|             |            | -                                       |            |                 |             |           |                 | T #D        |              |             |                |             | eu Di         | OT #C       |              |                                       |              |         |
| SUBLUI#A    | We Dotaine | d & Dassing                             | Volu       | matrice         | . 2         | Grada     | UBLU<br>tion 14 | t Detained  | % Deceing    | Volu        | matrice        |             | Gradation     | Wt Detained | % Dessing    | /olumetric                            |              |         |
| 2" 50       | W. Retaine | 100.0                                   | Dico 1     | 2409            | 15          | 2"        | 50              | r. Retained | 100.0        | Pico 1      | 2 410          | 1           | 2" 50         | w. Retained | 100.0        | Dico 1                                | 2 414        | 1       |
| 15" 375     | 7          | 100.0                                   | Rice       | 2.400           | -           | 1.5"      | 37.5            |             | 100.0        | Rice 2      | 2.410          | 2           | 1.5" 37.5     |             | 100.0        | Rice 2                                | 2.414        |         |
| 1" 25       |            | 100.0                                   | Trice 2    | 2.422           |             | 1"        | 25              |             | 100.0        | NICE 2      | 2.411          | -           | 1" 25         |             | 100.0        | NICE 2                                | 2.412        | -       |
| 3/4" 19     | -          | 100.0                                   |            | Brick 1         | Brick 2     | 3/4"      | 19              |             | 100.0        |             | Brick 1        | Brick 2     | 3/4" 19       |             | 100.0        |                                       | Brick 1      | Brick 2 |
| 1/2" 12.5   | 91.4       | 95.7                                    | A Ai       | 4748.5          | 4756.4      | 1/2"      | 12.5            | 134.3       | 92.8         | Air         | 4749 1         | 4748.3      | 1/2" 12.5     | 58.4        | 96.2         | Air                                   | 4749.9       | 4762.0  |
| 3/8" 9.5    | 349.8      | 79.2                                    | Vate       | 2725.7          | 27418       | 3/8"      | 9.5             | 330.4       | 75.0         | Water       | 2725.0         | 2740.7      | 3/8" 9.5      | 222.5       | 81.8         | Water                                 | 2719.1       | 2724 1  |
| #4 4.75     | 720.1      | 45.3                                    | SSE        | 4762.8          | 4765.6      | #4        | 4.75            | 597.1       | 42.9         | SSD         | 4761.0         | 4755.6      | #4 4.75       | 536.8       | 47.0         | SSD                                   | 4761.5       | 4775.2  |
| #8 2.36     | 297.5      | 31.3                                    | N@int(mm   | 130.2           | 130.8       | #8        | 2.36            | 220.5       | 31.0         | N@int(mm)   | 129.9          | 130.6       | #8 2.36       | 248.3       | 30.9         | N@int(mm)                             | 132.5        | 133.6   |
| #16 1.18    | 204.3      | 21.7                                    | N@des(mm   | 118.3           | 119.0       | #16       | 1.18            | 184.8       | 21.1         | N@des(mm)   | 118.5          | 118.9       | #16 1.18      | 157.6       | 20.6         | N@des(mm)                             | 120.0        | 121.0   |
| #30 0.6     | 108.9      | 16.6                                    | @max(mm    |                 | 117.4       | #30       | 0.6             | 98.1        | 15.8         | N@max(mm)   |                | 117.3       | #30 0.6       | 78.9        | 15.5         | N@max(mm)                             |              | 119.3   |
| #50 0.3     | 94.4       | 12.1                                    |            | ,<br>           |             | #50       | 0.3             | 83.4        | 11.3         |             |                |             | #50 0.3       | 65.5        | 11.3         | , , , , , , , , , , , , , , , , , , , |              |         |
| #100 0.15   | 77.7       | 8.5                                     |            | %AC Meter       | 4.2         | #100      | 0.15            | 65.3        | 7.8          |             | %AC Meter      | 4.2         | #100 0.15     | 50.9        | 8.0          | 9                                     | AC Meter     | 42      |
| #200 0.075  | 47.9       | 6.2                                     | 5          | Comp Temp       | 295         | #200 0    | 0.075           | 39.2        | 5.7          |             | Comp Temp      | 295         | #200 0.075    | 31.3        | 5.9          | C                                     | omp Temp     | 295     |
| Pass        | 217        |                                         | Sam        | ple Taken-Tons  | 117         | P         | ass             | 18.4        |              | Sam         | ole Taken-Tons | 203         | Pass          | 21.0        |              | Samol                                 | e Taken-Tons | 394     |
| DecLoss     | 110.3      |                                         | Jun        | Mix Temp        | 300         | Decl      | oss             | 87.0        |              | 5011        | Mix Temp       | 310         | DecLoss       | 70.7        |              |                                       | Mix Temp     | 320     |
| Cum Total   | 2124.0     |                                         | Antistrin  | 06              | 000         | Cum, T    | otal            | 1858.5      |              | Antistrip   | 06             | 010         | Cum. Total    | 1541.9      | 1            | Antistrip                             | 0.6          | 020     |
| %AC         | 5.2        |                                         | - another  | 0.0             |             | %         | AC              | 5.1         |              | , anothe    | 0.0            |             | %AC           | 5.3         |              | , anothe                              | 0.0          |         |
| Crushed     | 100        |                                         |            |                 |             | Crus      | hed             | 100         |              |             |                |             | Crushed       | 99          |              |                                       |              |         |
|             |            | Ir. Bskt                                | 2872.4     | Int.DryWt       | 2122.2      |           |                 | 1.5         | Tr. Bskt     | 2933.3      | Int.DryWt      | 1860        |               |             | Tr. Bskt     | 2872.2                                | Int.DryWt    | 1543.9  |
|             |            | Bskt+Mix w/AC                           | 5123       | AfterWash       | 2011.9      |           |                 | Bs          | skt+Mix w/AC | 4907.3      | AfterWash      | 1773        | -             | B           | skt+Mix w/AC | 4512.2                                | AfterWash    | 1473.2  |
|             |            | Bskt minus AC                           | 4995       | % Diff          | -0.1        |           | -               | B           | skt minus AC | 4796.1      | % Diff         | 0.1         |               | B           | skt minus AC | 4416.4                                | % Diff       | 0.1     |
|             |            | % LOSS                                  | 5.69       | Wt. Crush       | 1161.3      |           | -               |             | % LOSS       | 5.63        | Wt. Crush      | 1061.8      |               |             | % LOSS       | 5.84                                  | Wt. Crush    | 811.6   |
|             | CLIE       | OT #D                                   |            | -               |             | - (       |                 |             |              | eu pi       | OT #F          |             |               |             |              |                                       |              |         |
|             | Cradation  | Wt Detained                             | W Dessi-   | Value           | otrica      |           | 240             |             |              | Cradation   | Wt Deteined    | % Dessin    | Value         | otrion      |              |                                       |              |         |
|             | 2" Si      | Wt. Retained                            | 100.0      | Diec            | 2 442       | -         |                 |             |              | 2" 50       | w. Retained    | 70 Passing  | Dieg          | 2 446       | -            |                                       |              |         |
|             | AF Input   | IME IME CHEC                            | K Valid    | ation Input     | Validation  | Plant 6   | Report          | Val Dant    | Plant Mr     | nitor Mai   | inline Main    | ine Monitor | Road          |             |              |                                       |              |         |
| · ··· ] JI  | wir niput  | JUL JUL CHEC                            | vallo      | ation input     | valuation   | Flant     | Report.         | Plant       | Plant IVIC   | Will Will   | Walli          | ine wonto   | noac (        |             |              |                                       |              |         |
| 0           |            |                                         |            |                 |             |           |                 |             |              |             |                |             |               |             |              |                                       |              |         |

| A        | B           | С           | D            | E         | F            | G       | Н         | 1      | J          | K           | L            | M         | Ν             | 0       | P    | Q         | R         |
|----------|-------------|-------------|--------------|-----------|--------------|---------|-----------|--------|------------|-------------|--------------|-----------|---------------|---------|------|-----------|-----------|
|          |             | % LOSS      | 5.69         | Wt. Crush | 1161.3       |         |           | % LOSS | 5.63       | Wt. Crush   | 1061.8       |           |               | % LOSS  | 5.84 | Wt. Crush | 811.6     |
|          | SUDI        | OT #D       |              |           |              |         |           |        | el IDI     | OT #F       |              |           |               |         |      |           |           |
|          | Gradation   | Wt Potained | % Dassing    | Volum     | atrice       |         |           |        | Gradation  | Wt Retained | % Dassing    | Volun     | atrice        |         |      |           |           |
|          | 2" 50       | W. Netunieu | 100.0        | Rice 1    | 2 413        |         |           |        | 2" 50      | W. Retuined | 100.0        | Rice 1    | 2 4 16        | 1       |      |           |           |
|          | 1.5" 37.5   |             | 100.0        | Rice 2    | 2 415        |         |           |        | 1.5" 37.5  |             | 100.0        | Rice 2    | 2 415         |         |      |           |           |
|          | 1" 25       |             | 100.0        | TRICC 2   | 2.415        |         |           |        | 1" 25      |             | 100.0        | TRICC Z   | 2.410         |         |      |           |           |
|          | 3/4" 19     |             | 100.0        |           | Brick 1      | Brick 2 |           |        | 3/4" 19    |             | 100.0        |           | Brick 1       | Brick 2 |      |           |           |
|          | 1/2" 12.5   | 82.6        | 96.1         | Air       | 4744.4       | 4749.7  | 0         |        | 1/2" 12.5  | 92.0        | 94.2         | Air       | 4748.9        | 4754.2  |      |           |           |
|          | 3/8" 9.5    | 335.0       | 80.1         | Water     | 2724.3       | 2743.7  | 0         |        | 3/8" 9.5   | 275.7       | 77.0         | Water     | 2717.3        | 2741.7  |      |           |           |
|          | #4 4.75     | 733.8       | 45.2         | SSD       | 4754.4       | 4756.4  |           |        | #4 4.75    | 537.9       | 43.3         | SSD       | 4768.7        | 4766.2  |      |           |           |
|          | #8 2.36     | 327.7       | 29.5         | N@int(mm) | 130.4        | 130.2   |           |        | #8 2.36    | 225.0       | 29.2         | N@int(mm) | 131.6         | 132.0   |      |           |           |
|          | #16 1.18    | 180.0       | 21.0         | N@des(mm) | 118.0        | 118.0   |           |        | #16 1.18   | 134.3       | 20.7         | N@des(mm) | 119.2         | 119.3   |      |           |           |
|          | #30 0.6     | 96.5        | 16.4         | N@max(mm) |              | 116.4   |           |        | #30 0.6    | 72.4        | 16.2         | N@max(mm) |               | 117.7   |      |           |           |
|          | #50 0.3     | 85.8        | 12.3         |           |              |         |           |        | #50 0.3    | 65.7        | 12.1         |           |               |         |      |           |           |
|          | #100 0.15   | 77.5        | 8.6          | 9         | AC Meter     | 4.2     |           |        | #100 0.15  | 59.2        | 8.4          |           | %AC Meter     | 4.2     |      |           |           |
|          | #200 0.075  | 51.1        | 6.2          | С         | omp Temp     | 300     |           | #      | 200 0.075  | 38.8        | 5.9          | (         | Comp Temp     | 300     |      |           |           |
|          | Pass        | 21.5        | 1            | Sample    | e Taken-Tons | 899.2   |           |        | Pass       | 11.5        |              | Samp      | le Taken-Tons | 1579.5  |      |           |           |
|          | Dec Loss    | 107.8       |              |           | Mix Temp     | 305     |           |        | Dec Loss   | 83.4        |              |           | Mix Temp      | 310     |      |           |           |
|          | Cum. Total  | 2099.3      |              | Antistrip | 0.6          |         |           |        | Cum. Total | 1595.9      |              | Antistrip | 0.6           |         |      |           |           |
|          | %AC         | 5.3         |              |           |              |         |           |        | %AC        | 5.3         |              |           |               |         |      |           |           |
|          | Crushed     | 97          | ļ l          |           |              |         |           |        | Crushed    | 97          |              |           |               |         |      |           |           |
|          |             |             | Tr. Bskt     | 2832.6    | Int.DryWt    | 2099.9  |           |        |            |             | Tr. Bskt     | 2933.3    | Int.DryWt     | 1596.5  |      |           |           |
|          |             | Bs          | skt+Mix w/AC | 5064.1    | AfterWash    | 1992.1  |           |        |            | Bs          | kt+Mix w/AC  | 4628.1    | AfterWash     | 1513.1  |      |           |           |
|          |             | B           | skt minus AC | 4934.6    | % Diff       | 0       |           |        |            | B           | skt minus AC | 4528.5    | % Diff        | 0       |      |           |           |
|          |             |             | % LOSS       | 5.80      | Wt. Crush    | 1119.8  |           |        |            |             | % LOSS       | 5.88      | Wt. Crush     | 874.2   |      |           |           |
|          |             |             |              |           |              |         |           |        |            |             |              |           |               |         |      |           |           |
|          |             |             |              |           |              |         |           | 12     | Roadw      | ay Density  | Cores        |           |               |         |      |           |           |
|          | _           |             |              |           |              |         |           | A      | В          | C           | D            | E         |               |         |      |           |           |
|          |             |             |              |           |              |         | Use       | Binder | Binder     | Binder      | Binder       | Binder    |               |         |      |           |           |
|          |             |             |              |           |              |         | Station   |        |            |             |              |           |               |         |      |           |           |
|          | _           |             |              |           |              |         | Location  |        |            |             |              |           | 0             |         |      |           |           |
|          |             |             |              |           |              |         | Inickness |        |            |             |              |           | 7             |         |      |           |           |
|          |             |             |              |           |              |         | AIF       |        |            |             |              |           |               |         |      |           |           |
|          | -           |             |              |           |              |         | water     |        |            |             |              |           |               |         |      |           |           |
|          |             |             |              |           |              |         | SSD       |        |            |             |              |           | 1             |         |      | -         |           |
|          |             |             |              |           |              |         | Toppage   |        |            |             |              |           | 1             |         |      |           |           |
|          |             |             |              |           |              |         | Tonnage   |        |            |             |              | 4         |               |         |      |           |           |
| Remarks  | 5.          |             |              |           |              |         |           |        |            |             |              |           |               |         |      |           |           |
| D        | 10.10.01.01 |             |              |           |              |         |           |        |            |             |              |           |               |         |      |           | 0.77.00.0 |
| aPave 20 | 13 13.04.24 |             |              |           |              |         |           |        |            |             |              |           |               |         |      | -         | 6/1/20    |
|          |             |             |              |           |              |         |           |        |            |             |              |           |               |         |      |           |           |

# **Validation**

- 1. Summary of the 5 sublots test for the validation
- 2. The mean of the 5 sublot test that become the target values for the JMF
- 3. The standard deviation of the test results
- 4. PWL information
- 5. Whether or not the parameter meets specifications

| Project F<br>Gmm Gmb, ND<br>%Gmm, NI<br>%Gmm, NI<br>%Gmm, NI<br>%Voids<br>VMA<br>VFA<br>Gmb, NM<br>%Gmm, NM<br>slope<br>orrection factor<br>Gsb agg<br>2" 50<br>15" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/4" 19<br>1/2" 12.5<br>3/4" 3.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#50 0.30<br>#50 0.30<br>#50 0.30<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pbe<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H000000<br>#1<br>2.415<br>2.331<br>87.7<br>96.5<br>3.5<br>13.8<br>75<br>2.350<br>97.3<br>9.090<br>1.026<br>2.555 | Mix Type<br>#2<br>2.414<br>2.333<br>88.2<br>96.6<br>3.4<br>13.7<br>75<br>2.357<br>97.6 | Wearing<br>Lot<br>#3<br>2.413<br>2.326<br>87.3<br>96.4<br>3.6<br>13.9 | Course<br>111-01<br>#4<br>2.414<br>2.337<br>87.6 | JMF No.<br>Lot Size<br>#5<br>2.416<br>2.315 | Mean      | Plant      | H000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date             |            |           |       |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|-----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-----------|-------|----------------|
| Project         P           Gmm, ND         %Gmm, NI           %Gmm, ND         %Voids           VMA         VFA           Gmb, NM         %Gmm, NM           %Gmm, NM         %Gmm, NM           slope         orrection factor           Gsb agg         2"           2"         50           1.5"         37.5           1"         25           3/4"         19           1/2"         12.5           3/8"         9.5           #4         4.75           #8         2.36           #16         1.18           #30         0.60           #50         0.30           #100         0.15           #200         0.075           %AC         dust/Peff           Gse         Pba           Pba         %Antistrip           %Crushed         %                                                                                                                                                                                                                                                                                                                                                                                                                                         | #1<br>2.415<br>2.331<br>87.7<br>96.5<br>3.5<br>13.8<br>75<br>2.350<br>97.3<br>9.090<br>1.026<br>2.555            | #2<br>2.414<br>2.333<br>88.2<br>96.6<br>3.4<br>13.7<br>75<br>2.357<br>97.6             | #3<br>2.413<br>2.326<br>87.3<br>96.4<br>3.6<br>13.9                   | #4<br>2.414<br>2.337<br>87.6                     | #5<br>2.416<br>2.315                        | Mean      |            | HUUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date             |            |           |       |                |
| Gmm<br>Gmb, ND<br>%Gmm, NI<br>%Gmm, ND<br>%Voids<br>VMA<br>VFA<br>Gmb, NM<br>%Gmb, ND<br>%Crushed<br>%Gmb, ND<br>%Gmb, ND<br>%Gmb, ND<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #1<br>2.415<br>2.331<br>87.7<br>96.5<br>3.5<br>13.8<br>75<br>2.350<br>97.3<br>9.090<br>1.026<br>2.555            | #2<br>2.414<br>2.333<br>88.2<br>96.6<br>3.4<br>13.7<br>75<br>2.357<br>97.6             | #3<br>2.413<br>2.326<br>87.3<br>96.4<br>3.6<br>13.9                   | #4<br>2.414<br>2.337<br>87.6                     | #5<br>2.416<br>2.315                        | Mean      |            | and the second se |                  |            |           |       |                |
| Gmm<br>Gmb, ND<br>%Gmm, NI<br>%Gmm, ND<br>%Voids<br>VMA<br>VFA<br>Gmb, NM<br>%Gmm, NM<br>slope<br>orrection factor<br>Gsb agg<br>2" 50<br>15" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/4" 19<br>1/2" 12.5<br>3/4" 19<br>1/2" 12.5<br>3/4" 3.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gsse<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.415<br>2.331<br>87.7<br>96.5<br>3.5<br>13.8<br>75<br>2.350<br>97.3<br>9.090<br>1.026<br>2.555                  | 2.414<br>2.333<br>88.2<br>96.6<br>3.4<br>13.7<br>75<br>2.357<br>97.6                   | 2.413<br>2.326<br>87.3<br>96.4<br>3.6<br>13.9                         | 2.414<br>2.337<br>87.6                           | 2.416                                       |           | StDev      | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qu               | PWL        | PWLu      | PWL   | Validate?      |
| Gmb, ND<br>%Gmm, NI<br>%Gmm, NI<br>%Voids<br>VMA<br>VFA<br>Gmb, NM<br>%Gmm, NM<br>slope<br>orrection factor<br>Gsb agg<br>2" 50<br>15" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/4" 19<br>1/2" 12.5<br>3/4" 19<br>1/2" 12.5<br>3/8" 9.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.331<br>87.7<br>96.5<br>3.5<br>13.8<br>75<br>2.350<br>97.3<br>9.090<br>1.026<br>2.565                           | 2.333<br>88.2<br>96.6<br>3.4<br>13.7<br>75<br>2.357<br>97.6                            | 2.326<br>87.3<br>96.4<br>3.6<br>13.9                                  | 2.337<br>87.6                                    | 2,315                                       | 2.4144    | 0.001140   | 13.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.16            | 100        | 100       | 100   | OK             |
| %Gmm, NI           %Gmm, ND           %Voids           VMA           VFA           Gmb, NM           %Gmm, NM           %Star           %Star <td>87.7<br/>96.5<br/>3.5<br/>13.8<br/>75<br/>2.350<br/>97.3<br/>9.090<br/>1.026<br/>2.555</td> <td>88.2<br/>96.6<br/>3.4<br/>13.7<br/>75<br/>2.357<br/>97.6</td> <td>87.3<br/>96.4<br/>3.6<br/>13.9</td> <td>87.6</td> <td></td> <td>2.3284</td> <td>0.008473</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | 87.7<br>96.5<br>3.5<br>13.8<br>75<br>2.350<br>97.3<br>9.090<br>1.026<br>2.555                                    | 88.2<br>96.6<br>3.4<br>13.7<br>75<br>2.357<br>97.6                                     | 87.3<br>96.4<br>3.6<br>13.9                                           | 87.6                                             |                                             | 2.3284    | 0.008473   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| %Usmm, NU           %Voids           VMA           VFA           Gmb, NM           %Gmm, NM           slope           orrection factor           Gsb agg           2"           50           1.5"           37.5           1"           25           3/4"           19           1/2"           3/8"           9.5           #4           #30           0.60           #30           9.0           9.0           9.0           44.75           #8           2.36           #16           1.18           #30           9.5           #44           9.5           #40           0.60           #30           9.0           #16           1.18           #30           9.5           #44           9.5           #200           0.15           #200           0.075 <td>96.5<br/>3.5<br/>13.8<br/>75<br/>2.350<br/>97.3<br/>9.090<br/>1.026<br/>2.565</td> <td>96.6<br/>3.4<br/>13.7<br/>75<br/>2.357<br/>97.6</td> <td>96.4<br/>3.6<br/>13.9</td> <td>00.0</td> <td>86.8</td> <td>87.52</td> <td>0.5167</td> <td></td> <td>6.74</td> <td></td> <td>100</td> <td>100</td> <td>OK</td>                                                                                                       | 96.5<br>3.5<br>13.8<br>75<br>2.350<br>97.3<br>9.090<br>1.026<br>2.565                                            | 96.6<br>3.4<br>13.7<br>75<br>2.357<br>97.6                                             | 96.4<br>3.6<br>13.9                                                   | 00.0                                             | 86.8                                        | 87.52     | 0.5167     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.74             |            | 100       | 100   | OK             |
| Voids<br>VFA<br>Gmb, NM<br>VFA<br>Gmb, NM<br>Slope<br>orrection factor<br>Gsb agg<br>2" 50<br>1.5" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/4" 19<br>1/2" 12.5<br>3/4" 19<br>1/2" 12.5<br>3/4" 3.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.5<br>13.8<br>75<br>2.350<br>97.3<br>9.090<br>1.026<br>2.565                                                    | 3.4<br>13.7<br>75<br>2.357<br>97.6                                                     | 13.9                                                                  | 96.8                                             | 95.8                                        | 96.42     | 0.3768     | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.87             | 100        | 100       | 100   | OK             |
| VFA<br>Gmb, NM<br>%Gmm, NM<br>slope<br>orrection factor<br>Gsb agg<br>2" 50<br>1.5" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/8" 9.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#50 0.30<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>2.350<br>97.3<br>9.090<br>1.026                                                                            | 75<br>2.357<br>97.6                                                                    | 15.5                                                                  | 13.5                                             | 4.2                                         | 3.50      | 0.3766     | 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.44             | 100        | 100       | 100   | OK             |
| Gmb, NM<br>%Gmm, NM<br>slope<br>orrection factor<br>Gsb agg<br>2" 50<br>1.5" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/4" 19<br>1/2" 12.5<br>3/4" 4.75<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#50 0.30<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba<br>Pba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.350<br>97.3<br>9.090<br>1.026<br>2.565                                                                         | 2.357                                                                                  | 74                                                                    | 76                                               | 71                                          | 74.2      | 1924       | 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.01             | 100        | 100       | 100   | OK             |
| %Gmm, NM           slope           orrection factor           Gsb agg           2"           50           1.5"           37.5           1"           25           3/4"           19           1/2"           12.5           3/8"           9.5           #4           4.75           #8           2.36           #16           1.18           #30           0.60           #50           0.30           #100           #100           #200           0.075           %AC           Gse           Pba           Pba           %Antistrip           %Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.3<br>9.090<br>1.026<br>2.565                                                                                  | 97.6                                                                                   | 2 322                                                                 | 2,360                                            | 2 348                                       | 2 3474    | 0.015027   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       | UN             |
| slope<br>orrection factor<br>Gsb agg<br>2" 50<br>15" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/4" 19<br>1/2" 12.5<br>3/8" 9.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pbe<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.090<br>1.026<br>2.565                                                                                          |                                                                                        | 96.2                                                                  | 97.8                                             | 97.2                                        | 97.22     | 0.6181     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.26             |            | 91        | 91    | OK             |
| orrection factor<br>Gsb agg<br>2" 50<br>15" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/8" 9.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pbe<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.026                                                                                                            | 8.680                                                                                  | 9,400                                                                 | 9.510                                            | 9.300                                       | 9,1960    | 0.327307   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| Gsb agg         2"         50           1.5"         37.5         1"           1"         25         3/4"         19           1/2"         12.5         3/8"         3.5           #4         4.75         #8         2.36           #16         1.18         #30         0.60           #50         0.30         #100         0.15           #200         0.075         ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 565                                                                                                            | 1.167                                                                                  | 1.163                                                                 | 1.169                                            | 1.158                                       | 1.14      | 0.0616     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| 2" 50<br>1.5" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/8" 9.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#50 0.30<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pba<br>Pba<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.000                                                                                                            | 2.565                                                                                  | 2.565                                                                 | 2.565                                            | 2.565                                       | 2.5650    | 0.000000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| 1.5" 37.5<br>1" 25<br>3/4" 19<br>1/2" 12.5<br>3/8" 3.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#50 0.30<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pba<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                            | 100.0                                                                                  | 100.0                                                                 | 100.0                                            | 100.0                                       | 100.00    | 0.0000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| T         25           3/4"         19           1/2"         12.5           3/8"         9.5           #4         4.75           #8         2.36           #16         1.18           #30         0.60           #50         0.30           #100         0.15           #200         0.075           %AC         Gse           Pba         Pbe           %Antistrip         %Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                            | 100.0                                                                                  | 100.0                                                                 | 100.0                                            | 100.0                                       | 100.00    | 0.0000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| 3r4 19<br>1/2" 12.5<br>3/8" 9.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#50 0.30<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pbe<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0                                                                                                            | 100.0                                                                                  | 100.0                                                                 | 100.0                                            | 100.0                                       | 100.00    | 0.0000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| #2 12.5<br>3/8" 9.5<br>#4 4.75<br>#8 2.36<br>#16 1.18<br>#30 0.60<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pba<br>Pba<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                                                                            | 100.0                                                                                  | 100.0                                                                 | 100.0                                            | 100.0                                       | 100.00    | 14000      | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 70             | 400        |           | 100   | OK             |
| 3ro         3.5           #4         4.75           #8         2.36           #16         1.18           #30         0.60           #50         0.30           #100         0.15           #200         0.075           %AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.7                                                                                                             | 32.8                                                                                   | 36.2                                                                  | 36.1                                             | 34.2                                        | 79.62     | 1.4680     | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.12             | 07         | 07        | 00    | OK             |
| #4         4,13           #8         2,36           #16         1.18           #30         0.60           #50         0.30           #100         0.15           #200         0.075           %AC         dust/Peff           Gse         Pba           Pba         Pbe           %Antistrip         %Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.2                                                                                                             | 13.0                                                                                   | 47.0                                                                  | 45.2                                             | 42.2                                        | 10.02     | 2.0031     | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.40             | 97         | 100       | 100   | UK             |
| #16 1.18<br>#30 0.60<br>#50 0.30<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>Pba<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.5                                                                                                             | 42.5                                                                                   | 30.9                                                                  | 29.5                                             | 29.2                                        | 30.38     | 0.9576     | 3.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.40             | 100        | 100       | 100   | Inder Specilim |
| #30 0.60<br>#50 0.30<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 217                                                                                                              | 211                                                                                    | 20.6                                                                  | 21.0                                             | 20.7                                        | 21.02     | 0.4324     | 4.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.63             | 100        | 100       | 100   | phoer specium  |
| #50 0.30<br>#100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.6                                                                                                             | 15.8                                                                                   | 15.5                                                                  | 16.4                                             | 16.2                                        | 16 10     | 0.4624     | 4 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00             | 100        | 100       | 100   |                |
| #100 0.15<br>#200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pba<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.1                                                                                                             | 11.3                                                                                   | 11.3                                                                  | 12.3                                             | 12.1                                        | 11.82     | 0.4817     | 4.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.15             | 100        | 100       | 100   |                |
| #200 0.075<br>%AC<br>dust/Peff<br>Gse<br>Pba<br>Pbe<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                                                                                                              | 7.8                                                                                    | 8.0                                                                   | 8.6                                              | 8.4                                         | 8.26      | 0.3435     | 5.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.82             | 100        | 100       | 100   |                |
| XAC<br>dust/Peff<br>Gse<br>Pba<br>Pbe<br>XAntistrip<br>XCrushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.2                                                                                                              | 5.7                                                                                    | 5.9                                                                   | 6.2                                              | 5.9                                         | 5.98      | 0.2168     | 3.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.23             | 100        | 100       | 100   | OK             |
| dust/Peff<br>Gse<br>Pba<br>Pbe<br>XAntistrip<br>XCrushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.2                                                                                                              | 5.1                                                                                    | 5.3                                                                   | 5.3                                              | 5.3                                         | 5.24      | 0.0894     | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.24             | 100        | 100       | 100   |                |
| Gse<br>Pba<br>Pbe<br>XAntistrip<br>XCrushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.38                                                                                                             | 1.27                                                                                   | 1.31                                                                  | 1.38                                             | 1.31                                        | 1.330     | 0.04848    | 15.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.57             | 100        | 100       | 100   | OK             |
| Pba<br>Pbe<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.603                                                                                                            | 2.602                                                                                  | 2.601                                                                 | 2.602                                            | 2.604                                       | 2.6024    | 0.001140   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| Pbe<br>%Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6                                                                                                              | 0.6                                                                                    | 0.6                                                                   | 0.6                                              | 0.6                                         | 0.600     | 0.00000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| %Antistrip<br>%Crushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5                                                                                                              | 4.5                                                                                    | 4.5                                                                   | 4.5                                              | 4.5                                         | 4.50      | 0.00000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| %Urushed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6                                                                                                              | 0.6                                                                                    | 0.6                                                                   | 0.6                                              | 0.6                                         | 0.60      | 0.0000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       | _              |
| C T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0                                                                                                            | 100.0                                                                                  | 99.0                                                                  | 97.0                                             | 97.0                                        | 98.60     | 1.5166     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10             | 100        | 400       | 100   |                |
| Lomp lemp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 235                                                                                                              | 235                                                                                    | 235                                                                   | 300                                              | 300                                         | 297.00    | 2.1        | 3.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.13             | 100        | 100       | 100   |                |
| Materia AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300                                                                                                              | 310                                                                                    | 320                                                                   | 305                                              | 310                                         | 4 20      | 6.4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       | -              |
| MeterAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.2                                                                                                              | 4.2                                                                                    | 4.2                                                                   | 4.2                                              | 4.2                                         | 4.20      | 0.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           | _     |                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Core A                                                                                                           | Roadw                                                                                  | ay Density                                                            | Cores                                            | Core F                                      | 2         | Manuine    | Tonnage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % Pay<br>#DIV/01 | #DN//01    |           |       |                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                        |                                                                       |                                                  |                                             | 4         | Mar A      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOTATO.          | worvro.    | -4        |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Main                                                                                                             | Main                                                                                   | Main                                                                  | Main                                             | Main                                        |           | Minor B    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                                                        |                                                                       |                                                  |                                             |           | Minor C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            | <b></b>   |       | -              |
| uses PWL for Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | line if 3 or m                                                                                                   | ore sublots a                                                                          | are Mainlin                                                           | e use                                            |                                             |           | Minor D    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| "Mainline = WC, Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inder, Base                                                                                                      | e, Ramp >30                                                                            | Oft, Ints. A                                                          | ACC/Dec, A                                       | Airport Cen                                 | ter       | Minor E    | eichted hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | toonage          | associated | with core |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                |                                                                                        |                                                                       |                                                  |                                             |           | /oray w    | cigined by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tonnage          | associated | With Core | 3     |                |
| Ut.<br>Mainline Der 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . Mean<br>#DIV/0!                                                                                                | #DIV/0!                                                                                | QL<br>#DIV/0!                                                         | Q <sub>0</sub><br>#DIV/0!                        | #DIV/0!                                     |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total To                                                                                                         | ns                                                                                     |                                                                       | 0                                                |                                             |           | <b>Fin</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            | <u> </u>  |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gmm                                                                                                              |                                                                                        |                                                                       | 2.414                                            | -                                           |           | Fin        | ai 70 Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y                |            |           | -     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adjustn                                                                                                          | nent Facto                                                                             | r                                                                     | 1.00                                             |                                             |           | Adjust     | od Ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000             | 0          | <b>N</b>  |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adjuste                                                                                                          | d Total To                                                                             | ns                                                                    | 0                                                |                                             |           | Aujust     | eu rom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lage             |            | <u></u>   |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                |                                                                                        |                                                                       |                                                  |                                             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                                                        |                                                                       |                                                  |                                             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |                |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JMF Inpu                                                                                                         | t JMF                                                                                  | JM                                                                    | F CHECK                                          | Vali                                        | dation In | put Va     | lidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Pla            | nt Repor   | t-Val     | Plant | Plant Monit    |

# <u>Plant Report – Val</u>

The Plant Report – Val - A summary sheet of the validation that contains some of the raw data.

|                                | 5               | 1.75 I. 75         |                 | Supernave          | Aenhalt Con    | crete Plant        | enort   |         | U 1                | <u> </u>     |                    |         |
|--------------------------------|-----------------|--------------------|-----------------|--------------------|----------------|--------------------|---------|---------|--------------------|--------------|--------------------|---------|
|                                |                 |                    |                 | Superpave          | AsphaltCon     | crete Plant P      | report  |         |                    | r - r        |                    |         |
| Proj. No.                      | H000000         |                    | Plant           | H000               |                | Desig              | n Level | 1       |                    | Mix Type     | Wearing            | Course  |
| Proj. No.                      | abcdef          |                    | JMF No.         |                    |                | 3                  | Lot No. | 111-    | 01                 | Mix Use      | ML - V             | Vearing |
| Lot Size                       |                 |                    | Start Date      | 6/1/2016           |                | En                 | d Date  | 6/2/2   | 016                | Purpose Code |                    |         |
| No. Sublots                    | 5               |                    | %AC             | 5.1                |                |                    | Gsb     | 2.5     | 65                 | Ps           | 94.9               |         |
| R                              | oadway Category |                    |                 |                    |                |                    |         |         |                    |              |                    |         |
|                                | exclusio        | ons/grindings      | 0.534 (yes/no   | )                  |                |                    |         |         |                    |              |                    |         |
|                                | IRI             |                    |                 |                    |                |                    |         |         |                    |              |                    |         |
|                                |                 |                    |                 |                    |                |                    |         |         |                    |              |                    |         |
|                                |                 |                    |                 |                    |                |                    |         |         |                    |              |                    |         |
|                                |                 | Theo               | retical Maximu  | m Specific G       | ravity, Gmm "F | Rice" (AASHT       | O T209  | or DOT  | D TR327)           |              |                    |         |
|                                |                 | G                  | m1              | G                  | nm2            | Gn                 | nm3     |         | G                  | mm4          | G,                 | nm5     |
|                                |                 | A                  | B               | A                  | B              | A                  | B       |         | A                  | В            | A                  | B       |
| Wt of Mix                      |                 | 1835.0             | 1967.1          | 1938.1             | 1850.0         | 1749.9             | 171     | 5.2     | 1725.6             | 1852.2       | 1787.2             | 1786.6  |
| Wt of Pyc & H2O                |                 | 1396.6             | 1459.2          | 1393.1             | 1458.7         | 1393.1             | 145     | 8.7     | 1393.5             | 1458.9       | 1393.5             | 1458.9  |
| Wt of Pyc, H2O &               | Mix             | 2469.6             | 2614.1          | 2527.0             | 2543.3         | 2418.0             | 246     | 2.9     | 2403.9             | 2544.1       | 2441.0             | 2505.6  |
| G <sub>mm</sub> , Rice Gravity | y               | 2.408              | 2.422           | 2.410              | 2.417          | 2.414              | 2.4     | 12      | 2.413              | 2.415        | 2.416              | 2.415   |
| Average G <sub>mm</sub>        |                 | G <sub>mm1</sub> = | 2.415           | G <sub>mm2</sub> = | 2.414          | G <sub>mm3</sub> = | 2.4     | 13      | G <sub>mm4</sub> = | = 2.414      | G <sub>mm5</sub> = | 2.416   |
|                                |                 |                    | Plant Test Prop | perties (AASH      | ITO T166, T20  | 9, T245/DOTE       | TR 30-  | 4, 305, | &327)              |              |                    |         |
|                                | Sublot No.      |                    |                 |                    | 2              | :                  | 3       |         |                    | 4            |                    | 5       |
| G <sub>mm</sub>                |                 | 2.4                | 15              | 2.4                | 414            | 2.4                | 113     |         | 2.                 | .414         | 2.4                | 416     |
| Wt (Mass) in Air               |                 | 474                | 8.5             | 474                | 49.1           | 474                | 19.9    |         | 47                 | 44.4         | 474                | 18.9    |
| Wt (Mass) in Wat               | er              | 272                | 5.7             | 272                | 25.0           | 271                | 19.1    |         | 27                 | 24.3         | 27                 | 17.3    |
| SSD Wt (Mass)                  |                 | 476                | 2.8             | 476                | 61.0           | 476                | 51.5    |         | 47                 | 54.4         | 476                | 68.7    |
| G <sub>mb</sub> , ND           |                 | 2.3                | 31              | 2.3                | 333            | 2.3                | 326     |         | 2.                 | .337         | 2.3                | 315     |
| Density                        |                 | 14                 | 5.5             | 14                 | 5.6            | 14                 | 5.1     |         | 14                 | 45.8         | 14                 | 4.5     |
| % G <sub>mm</sub> , ND         |                 | 96                 | .5              | 96                 | 6.6            | 96                 | 6.4     | T       | 9                  | 6.8          | 9                  | 5.8     |
| Ht. @ NI (mm)                  |                 | 13                 | 0.2             | 12                 | 9.9            | 13                 | 2.5     |         | 13                 | 30.4         | 13                 | 1.6     |
| Ht. @ ND (mm)                  |                 | 11                 | 3.3             | 11                 | 8.5            | 12                 | 0.0     |         | 11                 | 18.0         | 11                 | 9.2     |
| % G <sub>mm</sub> , NI         |                 | 87                 | .7              | 88                 | 3.2            | 87                 | 7.3     | T       | 8                  | 37.6         | 86                 | 6.8     |
| % Voids, Va                    | i               | 3                  | 5               | 3                  | .4             | 3                  | .6      |         |                    | 3.2          | 4                  | .2      |
| % VMA                          |                 | 13                 | .8              | 1                  | 3.7            | 13                 | 3.9     |         | 1                  | 3.5          | 14                 | 1.3     |
| % VFA                          |                 | 7                  | 5               | 7                  | 5              | 7                  | 4       |         |                    | 76           | 7                  | 1       |

| 35 |                       |                         | Asph    | Aggr   | RAP | AntiStrip | Asph  | Aggr     | RAP      | AntiStrip | Asph    | Aggr  | RAP | AntiStrip | Asph | Aggr  | RAP    | AntiStrip | Asph      | Aggr    | RAP     | AntiStrip |
|----|-----------------------|-------------------------|---------|--------|-----|-----------|-------|----------|----------|-----------|---------|-------|-----|-----------|------|-------|--------|-----------|-----------|---------|---------|-----------|
| 36 |                       | 1st Meter Reading, AM   |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 37 | % Asphalt             | 1st Meter Reading, PM   |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 38 | Content               | 2nd Meter Reading, AM   |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 39 |                       | 2nd Meter Reading, PM   |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 40 | % AC Meter            |                         |         | 4.     | 2   |           |       | 4        | 2        |           |         | 4     | 2   |           |      | 4.    | 2      |           |           | 4.      | 2       |           |
| 41 | Comp. Tem             | D.                      |         | 29     | )5  |           |       | 29       | 95       |           |         | 29    | 95  |           |      | 30    | )0     |           |           | - 30    | )0      |           |
| 42 | Dust/P <sub>eff</sub> |                         |         | 1.3    | 38  |           |       | 1.3      | 27       |           |         | 1.3   | 31  |           |      | 1.3   | 38     |           |           | 1.3     | 31      |           |
| 43 | G <sub>se</sub>       |                         |         | 2.6    | 03  |           |       | 2.6      | 602      |           |         | 2.6   | 01  |           |      | 2.6   | 02     |           |           | 2.6     | 04      |           |
| 44 | P <sub>ba</sub>       |                         |         | 0.     | 6   |           |       | 0.       | .6       |           |         | 0.    | .6  |           |      | 0.    | 6      |           |           | 0.      | 6       |           |
| 45 | P <sub>be</sub>       |                         |         | 4.     | 5   |           |       | 4        | .5       |           |         | 4     | .5  |           |      | 4.    | 5      |           |           | 4.      | 5       |           |
| 46 | Total Sublot          | Tons                    |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 47 | Sample Take           | en, Tons Accum.         |         | 11     | 7   |           |       | 20       | )3       |           |         | - 39  | 94  |           |      | 89    | 99     |           |           | 15      | 80      |           |
| 48 | Mix Tempera           | ature                   |         | - 30   | 0   |           |       | 31       | 10       |           |         | 32    | 20  |           |      | - 30  | )5     |           |           | 31      | 0       |           |
| 49 |                       |                         | Test 1  | Test 2 |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 50 | % Anti Strip          |                         | 0.6     | 0.6    |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 51 | % Lime                |                         |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 52 | Remarks:              |                         |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 53 |                       |                         |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 54 |                       |                         |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 55 |                       |                         |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 56 | OTD Cert. A           | sphaltic Concrete Plant | t Tech. |        |     |           | QC Ce | ert. Asp | haltic ( | Concret   | e Plant | Tech. |     |           |      | APPRO | OVED B | BY: Dist  | trict Lat | oratory | / Engin | eer       |
| 57 |                       |                         |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         |         |           |
| 58 | LaPave 2013           | 3 v13.04.24             |         |        |     |           |       |          |          |           |         |       |     |           |      |       |        |           |           |         | 6/      | 7/2016    |

# <u>Plant</u>

This tab is for inputting P-Lot test data and monitoring the rolling averages of plant data

Blue fields are for input

- 1. "NEW" button initiates a new test set for a P-Lot. If the time line and daily tonnage requires multiple test in the same sublot, the P-Lot No. nomenclature can be modified by adding A, B, C....etc to the end of the lot number. It will be necessary to click "NEW" for each test set.
- 2. In the dropdown, choose either Contractor (Acceptance), DOTD (Verification), Contractor (QC only)
- 3. In the drop down, choose whether to use "No Oven Temp Corr.", or "With Oven Temp Corr."
- 4. In the drop down, choose whether the validation data is included in the "Rolling 5" data calculation.
- 5. Enter date(s) and P-Lot number. (The JMF sequence number plus the P-Lot, ex 101-001)
- 6. Enter the tonnage at which the sample was taken
- 7. Enter weights for moisture content of the loose mix
- 8. Enter the Metered AC (Virgin AC metered into the mix), the lab compaction temperature, the mix temperature in the haul truck, and the rate of anti-strip check
- 9. Gmm data entry
- 10. Furnace extraction data entry
- 11. Ndes briq data entry.
- 12. For every 5<sup>th</sup> P-Lot, a N<sub>max</sub> briq needs to be tested. After the "Submit" (#16 below) button has be clicked, the N<sub>des</sub> data can be cleared and the N<sub>max</sub> data can be entered. The submit button will need to be clicked again.
- 13. The recovered aggregate from the furnace extraction and the after wash weight of the aggregate.
- 14. Gradation weights
- 15. Weight of the crushed aggregate
- 16. The "Submit" button. This button has to be clicked to submit the entered data to the tables in the different Plant Summary tabs. Data can be edited or updated, but the "Submit" button will need to be clicked again to update the tables.
- 17. Weights of LWT briqs for calculating the void content.
- 18. Depending on if one pair of LWT briqs (single wheel tracker) or two pair (double wheel tracker) are made, this drop down chooses the pairing up to match the voids. This data can be added after the P-Lot data is entered. The "Scroll" (#21) and "Submit" (#16) buttons will help in navigating between P-Lots.
- 19. Data and parameter entry for LWT testing.
- 20. The rut depth for the correlating number of wheel passes.
- 21. The "Scroll" button displays data from previously entered P-Lots. Using the dropdown (#2), the three data entry types can be viewed & edited/updated by clicking the "Submit" (#16) button.
- 22. The "Print" button prints the data entry numbers and the rolling averages from the "Plant" tab.
- 23. The tonnage for the P-Lot. This can be entered after the P-Lot is closed. The "Scroll" and "Submit" buttons can be helpful here.

24. Append buttons. Data will be "Pushed" **from** this LaPave file **to** another LaPave file. This is helpful in sharing data between the contractor and DOTD. One of the three types of data can be pushed or all three can be pushed together to another LaPave file.

#### REMEMBER TO ALWAYS USE THE SAVE FUNCTION OF EXCEL. THE "SUBMIT" BUTTON DOES NOT SAVE THE DATA, IT ONLY PUTS IT IN THE DATA TABLES

|      | А                 | В          | С          | D         | E        | F               | G       | Н                     | 1          | J      | К            | L          | М           | N         | 0            | Р        | Q             | R        | S      | Т          | U         | V    | W          | Х      |
|------|-------------------|------------|------------|-----------|----------|-----------------|---------|-----------------------|------------|--------|--------------|------------|-------------|-----------|--------------|----------|---------------|----------|--------|------------|-----------|------|------------|--------|
| 1    |                   |            |            |           |          |                 | D       | ata fo                | r Plant    |        |              |            |             |           |              |          |               |          |        |            |           |      |            |        |
| 2    |                   |            |            | 5         |          |                 |         |                       |            |        |              |            |             |           |              |          |               |          |        |            |           |      |            |        |
| 3    | DAT               | 5/4/       | 2016       |           | Plant    | t               | Des     | sign level            | 1          |        | Міх Туре     | Wearing    | Course      |           | Gyr.         | Rev      |               |          |        |            |           |      |            |        |
| 4    |                   |            |            |           | JMF No.  | 70              | 1-A     |                       |            |        |              |            |             |           | Nini         | 7        |               |          |        |            |           |      |            |        |
| 5    | Start Dat         | e 5/3/     | 2016       |           |          |                 |         |                       |            |        |              |            |             |           | Ndes         | 65       |               |          |        |            |           |      | 24         |        |
| 6    | End Dat           | 5/3/       | 2016       | %A0       | 5.2      | G <sub>sb</sub> | 2.597   | Ps                    | 94.8       | AC Co  | orr Factor   | 0.43       |             |           | Nmax         | 100      |               |          |        |            |           |      | 27         |        |
| 7    |                   |            |            |           |          |                 |         | 102                   |            |        |              | _          |             |           | _            |          |               |          |        |            |           | - N  |            |        |
| 8    | P-Lot No          | . 701      | -005       |           | P-Lot To | 100             | 03.6    | 23                    | Counter    | 4      |              |            | Contract    | or (Accep | tance)       | ] 2      |               |          |        |            |           |      |            | AL 1   |
| 9    |                   |            |            |           | <b>`</b> |                 |         |                       |            |        |              |            |             |           |              |          |               |          |        |            |           |      | PEND       |        |
| 10   | Theoretical M     | laximum S  | pecific Gr | avity, Gr | nm "Rice | יי<br>ר         |         |                       | Grada      | tion   | % Pass       | Vo         | lumetric    | s         |              |          |               |          |        |            | 1         |      |            |        |
| 11   |                   |            |            | 1         | 2        |                 |         |                       | 2" 50      |        | 100          | Ri         | ice 1       | 2.432     |              |          |               |          | NEW    |            | •         | \    |            |        |
| 12   | Wt of Mix         |            |            | 1823.8    | 2039.3   |                 |         |                       | 1.5" 37.5  | 14     | 100          | R          | ice 2       | 2.444     |              |          |               |          |        |            |           |      | APPEND     |        |
| 13   | Wt of Pyc & W     | ater       |            | 1393.0    | 1458.7   | 9               |         |                       | 1" 25      | •••    | 100          |            | - 1         |           |              |          | - (           |          |        |            |           | Acce | ntance (   | Only   |
| 14   | Wt of Pyc, Wat    | ter & Mix  |            | 2466.9    | 2663.5   | J               |         |                       | 3/4" 19    |        | 100          | Ai         | r           | 4/4/.5    | 11           |          |               | 4        |        |            | 21        |      | plance     |        |
| 15   |                   |            |            |           |          |                 |         |                       | 1/2" 12.5  | 126.6  | 93           | W          | /ater       | 2744.6    |              |          |               |          |        |            |           |      |            |        |
| 16   | LW I (one per     | ·JMF, proj | ect, or ev | ery 20,00 | JU tons) | 1.4             |         |                       | 3/8" 9.5   | 128.8  | 85           | S          | SD          | 4/50.8    |              |          | $\rightarrow$ |          |        |            |           |      |            |        |
| 18   | A White air (dru) | 3945.0     | 3946.9     |           | 1        | Len<br>Bricks:  | 1.8.2   | 118                   | #4 4.75    | 242.1  | 51           | H          | t@Nd        | 122.7     | )            |          | - f           |          |        |            | 16        |      | APPEND     |        |
| 19   | 3 Wt in water     | 2220.1     | 2222.4     | 17        | 7        | Avg AV          | 7.1     | ייו                   | #16 1.18   | 262.5  | 35           |            | Ht@Nma      |           | h 12         |          |               | SU       | JRIMIT |            | 10        | Veri | fication ( | Only 📗 |
| 20   | C Wt in air (SSD) | 3960.8     | 3962.6     | <u> </u>  |          | 1 Č             |         |                       | #30 0.6    | 166.4  | 25           |            | Ŭ,          |           |              | •        | - L           |          |        |            |           |      |            |        |
| 21   | / Volume (C-B)    | 1740.7     | 1740.2     |           |          |                 |         |                       | #50 0.3    | 179.8  | 15           | 1          | Meter AC    | 4.3       |              |          | - 7           |          |        |            |           | -    |            |        |
| 22   | D Bk SpGr (Alv)   | 2.266      | 2.268      |           |          | Right           |         |                       | #100 0.1   | 106.4  | 8            | Cor        | np Tem      | 295       | 8            |          |               | P        | RINT   |            | 22        |      |            | 00     |
| 23   | F %MxThGr 100D/E  | E 92.9     | 93.0       |           |          | Bricks:         | 3&4     |                       | #200 0.07  | 38.9   | 6.1          | N          | Mix Temp    | 320       |              |          |               |          |        |            |           |      | ND         | UC     |
| 24   | 4 % Voids (100-F) | 7.1        | 7.0        |           |          | Avg Av          | #DIV/0! |                       | Dec Loss   | 15.7   |              | · · ·      | AntiStrip   | 0.0       |              |          |               |          |        |            |           |      | Only       |        |
| 26   | Temp(°C           | 50         |            | Pass      | _ l eft  | Right           |         |                       | Cum Total  | 1682.5 |              | Sample Tak | ken-Ton     | 114       | 6            |          |               |          |        |            |           |      |            |        |
| 27   | Avg Rut (mm       | 3.66       |            | 5000      | 2.56     |                 |         |                       | %AC        | 5.0    |              | 10         |             |           | J            |          |               |          |        |            |           |      |            |        |
| 28   | At Pass           | 20000      | 10         | 7500      | 2.83     | 20              |         |                       | %Crushed   | 98     |              | <u> </u>   |             | _         |              |          |               |          | _      |            | -         |      |            |        |
| 29   | (Pass/Fail        | PASS       | 13         | 10000     | 3.03     | 20              |         |                       |            |        | Tr. Bs.t     | 2832.1     | Int.DryW    | 1683      | 13           |          |               |          |        | on Ton     |           | 3    |            |        |
| 30   | Data Taata        | E12/201    |            | 15000     | 3.32     | <b> </b>        |         | Initial Vit           | 1891.4     | 7 Bsk  | t+Mix w/AC   | 4613       | AfterWash   | 1595.8    | <b>)</b> '`` |          |               | U        |        | ven rer    | np Con.   | J    |            |        |
| 31   | Date Tester       | 5/3/201    | 9          | 20000     | 3.00     | /               |         | Final Vit<br>Moisture | 0.03       | / Bsk  | t minus AL   | 4017.1     | Vt Crust    | 572.3     | 115          |          |               | ſ        |        |            |           | 4    |            |        |
| 33   | LaPave 502 v1     | 16.03.18   |            |           |          |                 |         | in noiside            | 0.00       | %Los:  | s - Moisture | 5.35       | in a braid. | 072.0     |              | /28/2016 |               |          | Valid  | ation in F | Rolling 5 |      |            |        |
| 34   |                   |            |            |           |          |                 |         |                       |            |        |              |            |             |           |              |          |               | <u> </u> | -      |            |           |      |            |        |
| •    | ▶ P               | lant Repo  | rt-Val     | Plant     | Plant    | Monitor         | Mair    | line                  | Mainline M | onitor | Roadwa       | y Report   | Mino        | or Pro    | oject Su     | ımmar    | + :           | 4        |        |            |           |      |            |        |
| REAL | γc                |            |            |           |          |                 |         |                       |            |        |              |            |             |           |              |          |               |          |        |            |           |      | Ħ          |        |

There is no data entry for the "Rolling Average."

The following screen shot below displays the "Rolling Averages". By using the "Scroll" (#21) button above, the "Rolling Average" can be moved within the recorded data.

|    | A             | В          | С        | D        | E       | F       | G       | Н        | 1        | J        | K     | L        | M       | N       | 0        |
|----|---------------|------------|----------|----------|---------|---------|---------|----------|----------|----------|-------|----------|---------|---------|----------|
| 34 |               |            |          |          |         |         |         |          |          |          |       |          |         |         |          |
| 35 |               |            |          |          |         |         | Rol     | lina 5 f | or Plant | F .      |       |          |         |         |          |
| 26 | Polling 5     | Activo     |          |          |         |         | 1.01    | IME      | MEAN     | StDov    | 01    | 011      | DWI     |         |          |
| 27 | Rolling 5     | 111 007    | 111 006  | 111 005  | 11 004  | 11 002  |         | JWF      | MEAN     | SIDEV    | QL    | QU       | PVVL    |         |          |
| 20 | P-LOUNO.      | 1000.02    | 1000 5   | 4004     | 10041   | 1003    |         |          |          |          |       |          |         |         |          |
| 30 | P-LOUTON      | 1009.03    | 0.420    | 0.420    | 0.425   | 0.422   |         | 0.400    | 0.4240   | 0.002404 | 4.20  | 4.20     | 400     |         | OK       |
| 39 | Gmm           | 2.430      | 2.438    | 2.438    | 2.435   | 2.433   |         | 2.429    | 2.4348   | 0.003421 | 4.38  | 4.38     | 100     |         | OK       |
| 40 | GMD,ND        | 2.355      | 2.362    | 2.366    | 2.352   | 2.362   |         | 2.348    | 2.3594   | 0.005727 | 4.19  | 4.19     | 100     |         | 01/      |
| 41 | %Gmm,NI       | 90.6       | 90.8     | 90.6     | 90.4    | 90.9    |         | 90.22    | 90.66    | 0.1949   |       | 1.74     | 100     |         | OK       |
| 42 | %Gmm,ND       | 96.9       | 96.9     | 97.0     | 96.6    | 97.1    |         | 96.64    | 96.9     | 0.1871   | 7.48  | 3.21     | 100     |         |          |
| 43 | VFA           | 78         | 78       | 78       | 76      | 79      |         | 76.6     | 77.8     | 1.095    | 8.04  | 2.01     | 100     |         | OK       |
| 44 | VMA           | 14.0       | 13.8     | 13.6     | 14.1    | 13.8    |         | 14.30    | 13.86    | 0.1949   | 1.85  |          | 100     |         | OK       |
| 45 | %Voids        | 3.1        | 3.1      | 3.0      | 3.4     | 2.9     |         | 3.36     | 3.10     | 0.1871   | 3.21  | 7.48     | 100     |         | OK       |
| 46 | Extracted AC  | 5.2        | 5        | 5.0      | 5.1     | 5.0     |         | 5.20     | 5.06     | 0.0894   | 2.24  | 2.24     | 100     |         | OK       |
| 47 | Comp Temp     | 295        | 295      | 295      | 295     | 295     |         | 295      | 295.0    | 0.0      |       |          |         |         |          |
| 48 |               |            |          |          |         |         |         |          |          |          |       |          |         |         |          |
| 49 | Gradation     |            |          |          |         |         |         | JMF      | MEAN     | StDev    | QL    | QU       | PWL     |         |          |
| 50 | 2" 50         | 100.0      | 100.0    | 100.0    | 100.0   | 100.0   |         | 100.00   | 100.00   | 0.0000   |       |          |         |         |          |
| 51 | 1.5" 37.5     | 100.0      | 100.0    | 100.0    | 100.0   | 100.0   |         | 100.00   | 100.00   | 0.0000   |       |          |         |         |          |
| 52 | 1" 25         | 100.0      | 100.0    | 100.0    | 100.0   | 100.0   |         | 100.00   | 100.00   | 0.0000   |       |          |         |         |          |
| 53 | 3/4" 19       | 100.0      | 100.0    | 100.0    | 100.0   | 100.0   |         | 100.00   | 100.00   | 0.0000   |       |          |         |         | OK       |
| 54 | 1/2" 12.5     | 94.8       | 94.3     | 92.5     | 94.3    | 93.7    |         | 91.90    | 93.92    | 0.8843   | 4.52  | 4.52     | 100     |         | OK       |
| 55 | 3/8" 9.5      | 87.9       | 86.1     | 84.8     | 87.0    | 86.8    |         | 84.66    | 86.52    | 1.1563   | 3.46  | 3.46     | 100     |         | OK       |
| 56 | #4 4.75       | 69.1       | 68.2     | 65.3     | 67.1    | 67.5    |         | 67.98    | 67.44    | 1.4170   | 2.82  | 2.82     | 100     |         |          |
| 57 | #8 2.36       | 53.8       | 54.4     | 50.9     | 53.0    | 53.8    |         | 53.30    | 53.18    | 1.3682   | 2.19  | 2.19     | 100     |         | OK       |
| 58 | #16 1.18      | 36.6       | 37.2     | 35.3     | 35.9    | 36.8    |         | 35.52    | 36.36    | 0.76     | 2.64  | 2.64     | 100     |         |          |
| 59 | #30 0.6       | 25.5       | 26.6     | 25.4     | 25.4    | 26.5    |         | 24,90    | 25.88    | 0.6140   | 3.26  | 3.26     | 100     |         |          |
| 60 | #50 0.3       | 14.4       | 15.1     | 14.8     | 14.3    | 15.5    |         | 14.10    | 14.82    | 0.4970   | 4.02  | 4.02     | 100     |         |          |
| 61 | #100 0.15     | 8.2        | 8.4      | 8.4      | 7.9     | 8.7     |         | 7.96     | 8.32     | 0.2950   | 6.78  | 6.78     | 100     |         |          |
| 62 | #200 0 075    | 5.9        | 5.9      | 6.1      | 5.6     | 6.0     |         | 5.82     | 5.90     | 0.1871   | 3.74  | 3.74     | 100     |         | OK       |
| 63 |               | 0.0        |          |          |         |         |         |          |          |          |       |          |         |         |          |
| 64 | Other Factors | (Informati | onal Too | Is Only) |         |         |         | JME      | MFAN     | StDev    | QI    | QU       | PWI     |         |          |
| 65 | GmbEstND      | 2,338      | 2.340    | 2.346    | 2.329   | 2.339   |         |          | 2.3384   | 0.006107 |       | -        |         |         |          |
| 66 | GmbEst Nma    |            |          |          |         |         |         | 2.365    |          |          |       |          |         |         |          |
| 67 | %Gmm Nmax     |            |          |          |         |         |         | 97.36    |          |          |       |          |         |         |          |
| 68 | Design AC     | 52         | 52       | 52       | 52      | 52      |         |          | 5 20     | 0 0000   |       |          |         |         |          |
| 69 | %Antistrin    | 0.6        | 0.6      | 0.6      | 0.6     | 0.6     |         | 0.60     | 0.60     | 0,0000   |       |          |         |         |          |
| 70 | Meter AC      | 4.3        | 43       | 43       | 43      | 43      |         |          | 4 30     | 0.0000   |       |          |         |         |          |
| 71 | %Crushed      | 96.5       | 95.0     | 16.7     | 97.5    | 95.8    |         | 97.80    | 80.30    | 35 5870  |       |          |         |         |          |
| 72 | Mix Temp      | 300        | 200      | 320      | 315     | 280     |         | 205      | 301.0    | 16.7     |       |          |         |         |          |
| 73 | Cee           | 2 626      | 2 636    | 2 636    | 2 632   | 2 620   |         | 2.625    | 2 632    | 0.004382 |       |          | _       |         |          |
| 74 | Pha           | 2.020      | 2.000    | 2.000    | 2.002   | 2.025   |         | 0.4      | 2.002    | 0.004302 |       |          |         |         |          |
| 75 | Pho           | 1.4        | 4.6      | 4.6      | 4.7     | 4.7     |         | 1.0      | 4.7      | 0.004    |       |          |         |         |          |
| 76 | duct/Doff     | 4.0        | 4.0      | 4.0      | 1 10    | 1 20    |         | 4.0      | 1.26     | 0.0626   |       |          |         |         |          |
| 77 | clopo         | 6.51       | 6.20     | 6.61     | 6.41    | 6.41    |         | 1.22     | 6.45     | 0.0330   |       |          |         |         |          |
| 70 | siope         | 1.0072     | 1 0004   | 1 000    | 1.01    | 1.01    |         | 1.011    | 1 0000   | 0.00100  |       |          |         |         |          |
| 70 | concurración  | 1.0075     | 1.0094   | 1.009    | 1.01    | 1.01    |         | 1.011    | 1.0090   | 0.00109  |       |          |         |         |          |
| 19 |               |            |          |          |         |         |         |          |          |          |       |          |         |         |          |
| 80 |               |            |          |          |         |         | Roll    | ing 10   | for Plan | t        |       |          |         |         |          |
| 81 | Rolling 10    | Active     |          |          |         |         |         |          |          |          |       | MEAN     | StDev   |         |          |
| 82 | P-Lot No.     | 111-007    | 701-006  | 701-005  | 701-004 | 701-003 | 701-002 | Val E    | Val D    | Val C    | Val B |          |         |         |          |
| 83 | Gmm           | 2.430      | 2.438    | 2.438    | 2.435   | 2.433   | 2.436   | 2.434    | 2.438    | 2.427    | 2.424 | 2.4333   | 0.00487 | 7       | OK       |
| 84 | %Voids        | 3.1        | 3.1      | 3.0      | 3.4     | 2.9     | 3.2     | 3.1      | 4.1      | 3.1      | 3.3   | 3.23     | 0.3368  | 0       | OK       |
| 05 |               |            |          |          |         |         |         |          |          |          |       |          | 1       | -       | -        |
|    | • • …         | Validatio  | n Pl     | lant Rep | ort-Val | Plai    | nt P    | lant Mor | nitor N  | lainline | Main  | line Moi | nitor   | Roadway | / Report |
|    |               |            |          |          |         |         |         |          |          |          |       |          |         |         |          |

Plant Monitor

This tab will display F & t analysis for plant data.

# Mainline

- 1. Click "NEW" to start a new roadway lot
- 2. Choose a project from the dropdown. This associates the cores to the project. (Remember, it is possible to have the same lot number on multiple projects. Each project starts with roadway lot #1.)
- 3. Enter Date, from dropdown choose whether method 1 or 2, and enter Roadway Lot #. Depending on choice in #4, it will display "Mainline Lot #" or "Minor Lot #".
- 4. Choosing the mix use in this dropdown, will trigger between Mainline or Minor mix calculations.
- 5. Enter the beginning date and ending date of the mix placement for the lot. This can changed or edited later, using the Scroll (#12) and Submit (#11) buttons.
- 6. The tons for the sublot can be entered in just one block of each sublot or for each core.
- 7. The mix use and location are dropdown choices with the rest of the areas typable entries. The random number entry is for the transverse location. The station number represents the longitudinal location. Each sublot has three acceptance core entries.
- 8. The verification core has the same data fields as the acceptance cores.
- 9. The G<sub>mm</sub> check from a randomly chosen core from the lot is entered here. If the first one fails to verify then two more roadway cores are randomly selected and the G<sub>mm</sub> data is entered here.
- 10. To override the default  $G_{mm}$ , enter the  $G_{mm}$  to be used here.
- 11. After the data for the current session has been entered, click the submit button. This will put the data in the summary tables.
- 12. The "APPEND" button will "PUSH" any added data from this tab to another LaPave file. The intended use of this feature is for data transfer between the contractor and DOTD, the inspector updating the LaPave file at district, or updating files over a network. After clicking this button, the user will be prompted what file to append to. The user will have to navigate to where the second file is to send the new date to. The file can be located on the same computer, a USB stick or over a network.
- 13. Resolution core information is entered in this area.
- 14. G<sub>mm</sub> data derived from resolution cores is entered here.
- 15. The print button will print both the top and bottom of the "Mainline" tab.

#### REMEMBER TO ALWAYS USE THE SAVE FUNCTION OF EXCEL. THE "SUBMIT" BUTTON DOES NOT SAVE THE DATA, IT ONLY PUTS IT IN THE DATA TABLES

The second screen shot is the bottom portion of the "Mainline" tab with the density and statistical data.

| ÷ A                     |                                   | B           | С        | D       | Е       | F        | G       | н                                                                                                                | 1               | J        | К        | L          | М                         | N                | 0                | Р                | Q                | R S        | T                | U             | V          | W                     | ×    | Y    |
|-------------------------|-----------------------------------|-------------|----------|---------|---------|----------|---------|------------------------------------------------------------------------------------------------------------------|-----------------|----------|----------|------------|---------------------------|------------------|------------------|------------------|------------------|------------|------------------|---------------|------------|-----------------------|------|------|
| 1                       |                                   |             |          |         |         |          | Data fo | r Road                                                                                                           | way             | Mainlii  | ne Lot   |            |                           |                  |                  |                  |                  |            |                  |               | _          |                       |      |      |
| 2 0                     |                                   |             | 4.4      |         |         |          |         |                                                                                                                  |                 |          |          |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 3 2Pro                  | N. H                              | <u>1111</u> | 11       |         | - Flant | H000     | De      | esign level                                                                                                      | 1               |          | Міх Туре | -          |                           | 1                |                  |                  |                  |            |                  |               |            |                       |      |      |
| 4 Proj. I               | Varrel                            |             | A1.      |         | JMF No. | 70       | 1-B     |                                                                                                                  |                 |          | Mixuse   | ML-W       | earing                    | 4                |                  |                  |                  | (          |                  | 10.00         | 111        |                       |      |      |
| 5                       | TEL                               | E1313       | 016      |         |         |          |         |                                                                                                                  |                 |          |          |            |                           | _                | -                |                  |                  |            | Gmm Man          | ual Override  | 11         |                       |      |      |
| 7 3 Me                  |                                   | 1           | 24C      | 52      | G.      | 2 597    | P       | 94.8                                                                                                             | G               | 2 4 2 9  | i ſ      | Start Date | 4/29                      | /2016            | 1 5              | -                |                  |            |                  |               | <b>J</b>   |                       |      |      |
| 8                       |                                   |             | 71110    | 0.6     | -//     | 2.001    | .,      | 01.0                                                                                                             | <br>G           | JMF Vali | dated    | EndDate    | 5/5/                      | 2016             | <b>1 v</b>       | -                |                  |            |                  |               |            | -                     |      |      |
| 9 Mainline              | Lot #                             | 3           |          |         | Counter | 1        |         |                                                                                                                  |                 |          |          |            |                           |                  | -                |                  |                  |            | 1.1              |               | 10.5       |                       | -    | -    |
| 10                      |                                   | -           |          |         |         |          |         |                                                                                                                  |                 |          |          |            |                           |                  |                  |                  |                  | 4          |                  |               | <b>a</b> ( | <u> </u>              |      |      |
| 11                      | 6                                 |             | Subl     | ot #A   |         |          | Subl    | ot #B                                                                                                            |                 |          | Sub      | lot #C     |                           |                  | Subl             | ot #D            |                  |            | N 1              | JFW           |            |                       | PEND | ш    |
| 12<br>12 Miul Ian       | A                                 | cc1         | Acc2     | Acc3    | Ver     | Acc1     | Acc2    | Acc3                                                                                                             | Ver             | Acc1     | Acc2     | Acc3       | Ver                       | Acc1             | Acc2             | Acc3             | Ver              |            | · ·              |               |            |                       | LITE |      |
| 14 Station              | 29                                | 1+77        | 256+00   | 234+00  | 259+80  | 301+16   | 285+66  | 252+71                                                                                                           | 294+21          | 240+63   | 217+14   | 184+83     | 204+51                    | Wearing<br>34+71 | Wearing<br>64+43 | 79+63            | Wearing<br>50+58 |            |                  | 2015          |            |                       |      |      |
| 15 Locatio              | n Bi                              | TCL         | RTCL     | RTCL    | 200.00  | RTCL     | LTCL    | LTCL                                                                                                             | 201121          | LTCL     | LTCL     | LTCL       | 201101                    | RTCL             | RTCL             | RTCL             | 00.00            | 12         |                  |               |            |                       | 10   |      |
| 16 Randon               | n 0.                              | 533         | 0.964    | 0.844   | 0.604   | 0.73     | 0.35    | 0.668                                                                                                            | 0.336           | 0.151    | 0.08     | 0.383      | 0.532                     | 0.379            | 0.568            | 0.176            | 0.532            | 14         | $ $ $\leftarrow$ | $\rightarrow$ |            |                       | 12   |      |
| 17 Thickne              | ss 2                              | .50         | 2.50     | 2.50    | 2.09    | 2.38     | 2.00    | 1.88                                                                                                             | 2.04            | 1.96     | 1.84     | 2.15       | 1.77                      | 2.17             | 2.19             | 2.40             | 2.19             |            |                  |               |            |                       |      |      |
| 18 Air<br>19 Water      | 24                                | 41.4        | 2150.2   | 2442.4  | 1709.1  | 1275.9   | 2176.3  | 1843.0                                                                                                           | 1707.5<br>969 E | 1844.1   | 1725.6   | 2174.4     | 1657.0                    | 1919.2           | 2138.5           | 2261.9<br>1307 F | 1902.8           | 44         | 1                |               |            |                       |      |      |
| 20 SSD                  | 24                                | 43.6        | 2152.0   | 2444.6  | 1711.6  | 2246.9   | 2178.2  | 1846.3                                                                                                           | 1709.9          | 1846.0   | 1726.9   | 2175.7     | 1658.1                    | 1921.3           | 2140.0           | 2263.0           | 1903.9           |            | SU SU            | BMIT          |            |                       |      |      |
| 21 Gmb                  | 2.                                | 309         | 2.346    | 2.343   | 2.272   | 2.312    | 2.308   | 2.242                                                                                                            | 2.303           | 2.295    | 2.332    | 2.355      | 2.367                     | 2.304            | 2.362            | 2.367            | 2.357            |            |                  |               |            |                       |      |      |
| 22 Density              | 9                                 | 5.1         | 96.6     | 96.5    | 93.5    | 95.2     | 95.0    | 92.3                                                                                                             | 94.8            | 94.5     | 96.0     | 97.0       | 97.4                      | 94.9             | 97.2             | 97.4             | 97.0             | - 0        | 7                |               | -          | 45                    |      |      |
| 23 Tonnag               | je 10                             | 062         |          |         |         | 1019.5   |         |                                                                                                                  |                 | 1040.5   |          |            |                           | 1113.1           |                  |                  |                  |            | D                | DINT          |            | 15                    |      |      |
| 24 P-Lot#               |                                   |             |          |         |         | 8        |         |                                                                                                                  |                 |          |          |            |                           |                  |                  |                  |                  |            | I FI             |               |            |                       |      |      |
| 25                      |                                   | 1           | Subl     | ot #F   |         | <u> </u> | Sub     | ot #F                                                                                                            |                 | -        |          |            |                           | Besol            | ution            |                  |                  |            |                  |               |            |                       |      |      |
| 27                      | A                                 | cc1         | Acc2     | Acc3    | Ver     | Acc1     | Acc2    | Acc3                                                                                                             | Ver             |          |          | ●A         | ●B                        | +C               | *D               | ●E               | *F               |            |                  |               |            |                       |      |      |
| 28 MixUse               | We                                | aring       | Wearing  | Wearing | Wearing |          |         |                                                                                                                  |                 |          | Mix Use  |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 29 Station              | 106                               | 5+93        | 133+30   | 23+43   | 122+43  |          |         |                                                                                                                  |                 |          | Station  |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 30 Locatio<br>31 Bandon |                                   | 199         | 0.254    | 0.075   | 0.273   | 1        |         |                                                                                                                  |                 |          | Bandor   |            |                           |                  |                  |                  |                  | 12         |                  |               |            |                       |      |      |
| 32 Thickne              | 55 2                              | .24         | 2.13     | 2.24    | 2.36    |          |         |                                                                                                                  |                 | т        | hickness |            |                           |                  |                  |                  |                  | 13         |                  |               |            |                       |      |      |
| 33 Air                  | 21                                | 05.6        | 2114.2   | 2085.5  | 2182.5  |          |         |                                                                                                                  |                 |          | Air      |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 34 Water                | 11                                | 33.8        | 1223.8   | 1187.3  | 1256.7  |          |         |                                                                                                                  |                 |          | Water    |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 35 SSD                  | 21                                | 07.3        | 2115.5   | 2087.0  | 2183.8  |          |         |                                                                                                                  |                 |          | SSD      |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 37 Densitu              | - 2.                              | 4.9         | 97.6     | 95.4    | 2.354   |          |         |                                                                                                                  |                 | -        | Depsitu  |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 38 Tonnag               | e 10                              | 71.9        |          | 00.1    |         |          |         |                                                                                                                  |                 | -        | Tonnage  |            |                           |                  |                  |                  |                  |            |                  | -             |            |                       |      |      |
| 39 P-Lot#               |                                   |             |          |         |         |          |         |                                                                                                                  |                 |          | P-Lot#   |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
|                         |                                   |             |          |         |         |          |         |                                                                                                                  |                 |          |          |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 41<br>42 Sublet         |                                   | IC I        | G        | mm Cheo | CK      |          | -       |                                                                                                                  |                 | resoluti | on<br>I  |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 43 Core                 | A                                 | cc1         |          |         | Ava     |          |         | -                                                                                                                |                 | -        |          |            |                           |                  |                  |                  |                  |            |                  | -             |            |                       |      |      |
| 44 Mix                  | 18                                | 34.4        |          |         |         |          |         |                                                                                                                  |                 |          |          |            |                           |                  | 11               |                  |                  |            |                  |               |            |                       |      |      |
| 45 Pyc&W                | ater 13                           | 85.8        |          |         |         |          |         |                                                                                                                  |                 |          |          |            |                           |                  | 14               |                  |                  |            |                  |               |            |                       |      |      |
| 46 Pyc,Wtr              | 8.M ( 24                          | 69.8        |          |         |         |          | _       |                                                                                                                  | _               | _        |          |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 47 Lore G,              | 2                                 | 445         |          |         | 2       |          |         |                                                                                                                  |                 |          |          |            | -                         |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 49                      | 0.                                | 010         | <u> </u> |         |         |          | _       |                                                                                                                  |                 |          |          |            | -                         |                  |                  |                  |                  |            | -                |               |            |                       |      |      |
| 50 LaPace               | 2013 -13                          | 04.24       |          |         |         |          |         |                                                                                                                  |                 |          |          |            |                           |                  |                  | 5                | 23/2015          |            | 1                |               |            |                       |      |      |
| 51                      |                                   |             |          |         |         |          |         |                                                                                                                  |                 |          |          |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 52                      |                                   | _           | _        |         |         |          |         | and the second |                 |          | 1.00.00  |            | -                         |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 53                      | Data for Roadway Mainline Lot Pay |             |          |         |         |          |         |                                                                                                                  |                 |          |          |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |
| 54                      | -                                 | DI          |          | Dian    |         |          |         | 11                                                                                                               |                 | 1        | A        |            | Andreas Artic and Andreas | De               |                  |                  |                  |            |                  |               | - Com      | and the second second |      |      |
| • •                     | • •••                             | Pla         | ant      | Plant   | ivioni  | tor      | wain    | line                                                                                                             | Mair            | nine M   | vionito  | R          | oadwa                     | ау кер           | on               | Minc             | DT F             | roject Sun | imary            | Plar          | it sum     | mary                  | Pla  | nt v |
| READY                   |                                   |             |          |         |         |          |         |                                                                                                                  |                 |          |          |            |                           |                  |                  |                  |                  |            |                  |               |            |                       |      |      |

|     | А             | В         | С            | D       | E      | F   | G         | H       | 1                    | J         | K          | L           | Μ            | N       | 0   | Р          | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|---------------|-----------|--------------|---------|--------|-----|-----------|---------|----------------------|-----------|------------|-------------|--------------|---------|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53  |               |           |              |         |        | D   | ata for R | loadwa  | v Ma                 | inline    | Lot Par    | v           |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 54  |               |           |              |         |        |     |           |         | · ·                  |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 55  |               | N         | lainline D   | ensity  |        |     |           |         |                      | Mainli    | ne Accent  | anco Donsi  | ty PWI       |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 56  | Mainline      | Ac1       |              | Ac3     | Ver    | Res |           |         | Ac Count             | Mann      | 15         | unce Densi  |              | 2.65    |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 57  | Sublot #A     | 95.1      | 96.6         | 96.5    | 93.5   |     |           |         | Ac Mean              |           | 95.7       |             |              | 2.00    |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 58  | Sublot #B     | 95.2      | 95.0         | 92.3    | 94.8   |     |           |         | Ac Stdev             |           | 1 400      |             | PWI          | 100     |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 59  | Sublot #C     | 94.5      | 96.0         | 97.0    | 97.4   |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 60  | Sublot #D     | 94.9      | 97.2         | 97.4    | 97.0   |     |           |         | Mainline I           | Min       | 92         |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 61  | Sublot #E     | 94.9      | 97.6         | 95.4    | 96.9   |     |           |         |                      | 0/        |            |             | 0            |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 62  | Sublot #F     |           |              |         |        |     |           |         | Рау                  | / %       |            | 10          | 0            |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 63  |               |           |              |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 64  | Method        |           | 1            |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 65  |               |           |              |         |        |     |           |         |                      | Mainli    | ine Resolu | tion Densit | y PWL        |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 66  | Testing Labo  | ratory    | District Lal | b       |        |     |           |         | Res Count            | t         | 0          |             | QL           |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 67  | Ac Count      |           | 15           |         |        |     |           |         | Res Mean             |           |            |             | QU           |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 68  | Ac Mean       |           | 95.7         |         |        |     |           |         | Res Stdev            |           |            |             | PWL          |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 69  | Ac Stdev      |           | 1.400        |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 70  |               |           |              |         |        |     |           |         | Mainline I           | Min       | 92         |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 71  | Testing Labo  | ratory    | Contractor   |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 72  | Ver Count     |           | 5            |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 73  | Ver Mean      |           | 95.9         |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 74  | Ver Stdev     |           | 1.690        |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 75  |               |           |              |         |        |     |           |         | Mainline I           | _ot #     |            | 3           |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 76  | Difference of | Means     | 0.20         |         |        |     |           | -       | Total Tons           | S         |            | 5306        | 6.95         |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 77  | Rolling F & T | Equal     | Yes          |         |        |     |           |         | G <sub>mm</sub>      |           |            | 2.4         | 29           |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 78  |               |           |              |         |        |     |           |         | G <sub>mm</sub> from |           |            | JMF Va      | lidated      |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 79  |               |           |              |         |        |     |           |         | Adjustmer            | nt Factor |            | 1.0         | 00           |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 80  |               |           |              |         |        |     |           |         | Adjusted 1           | Total Tor | IS         | 5306        | . <b>9</b> 5 |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 81  |               |           |              |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 82  |               |           |              |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 83  |               |           |              |         |        |     |           |         |                      |           | Previ      | ous Lot     |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 84  |               |           |              |         |        |     |           |         | Lot#                 |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 85  |               |           |              |         |        |     |           |         | Mix Use              |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 86  |               |           |              |         |        |     |           |         | From                 |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 87  |               |           |              |         |        |     |           |         | Pay %                |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 88  |               |           |              |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 89  | LaPave 2013   | v13.04.24 |              |         |        |     |           |         |                      |           |            |             |              |         |     |            | 6/29/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 90  |               |           |              |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 91  |               |           |              |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |               | Plant     | Plant N      | Ionitor | Mainli | ne  | Mainline  | Monitor | Roa                  | dway R    | eport      | Minor       | Projec       | t Summa | arv | Plant Su   | mmary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |               | - Tearre  | - Marine IV  |         |        |     |           |         | nou                  | sinay it  | -porc      |             | . rojec      |         |     | - and - Bu | , and a second sec |
| RE4 | ADY           |           |              |         |        |     |           |         |                      |           |            |             |              |         |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### Mainline Monitor

The "Mainline Monitor" tab displays the "F & t' statistical information for a JMF.

It can calculate the for cores on a project or for all mainline information entered for a JMF.

- 1. The information populated in the header is from the information displayed on the "Mainline" tab.
- 2. The next area displays the date, Method 1 or 2, which mainline Lot # the data starts with & associated counter in LaPave. The higher the Mainline Lot # chosen on the previous tab (Mainline) the more data is used. The lot chosen to start the data analysis will also move the F & t test through the data set.
- 3. The dropdown choices are all cores or project only cores. The project choice is filtered by which project on the "Mainline" is chosen.
- 4. The statistical data.
- 5. Note to point out that the lot chosen on the "Mainline" tab is where the data analysis starts. F & t only performed on "Mainline" core data.
- 6. Print button to print the displayed data set.

| Proj. No.    |            | H111111      | 1            | Plant    | H000       | Desi       | an level | 1              | Mix Type   | Wearing Cour | se        | 1     |
|--------------|------------|--------------|--------------|----------|------------|------------|----------|----------------|------------|--------------|-----------|-------|
| Proj. Name   |            | LA 1         |              | JMF No.  |            | 111        | Í        |                | Mix use    | ML - We      | earing    | 1     |
| -            |            |              |              | 5        | start Date | 5/5/201    | 6        |                | End Date   | 5/6/2016     |           |       |
| DATE         | 5/12/2     | 2016         |              | -        |            |            | 5        |                |            |              |           |       |
| Method       | 1          |              |              | 2        |            |            |          |                |            |              | 3         |       |
| Starting a   | t Mainline | Lot #        | 4            | _        | Counter    | 2          |          | Level          | All        |              | <b>v</b>  |       |
|              |            |              |              |          |            |            |          |                |            |              |           |       |
|              | Rolling 3  | 0 Accept     | tance        |          |            |            | Rollin   | ng 10 Verifica | ation      |              |           |       |
| Project      | Lot #      | Sublot       | Station      | Density  |            | Project    | Lot #    | Sublot         | Station    | Density      |           | PRINT |
| 1111111      | 4          | #C           | 178+52       | 96.9     |            | H.011560   | 4        | #C             | 130+85     | 96           |           |       |
| 1111111      | 4          | #C           | 156+40       | 96.7     |            | H.011560   | 4        | #B             | 137+18     | 95           |           |       |
| 1111111      | 4          | #C           | 123+24       | 96.8     |            | H.011560   | 4        | #A             | 102+80     | 96.9         |           |       |
| 1111111      | 4          | #B           | 133+08       | 96.3     |            | H.011560   | 3        | #E             | 122+43     | 96.9         |           | 6     |
| 11111        | 4          | #B           | 103+74       | 97.1     |            | H.011560   | 3        | #0             | 204+58     | 97 4         |           |       |
| 111111       | 4          | #D           | 104+27       | 96.2     |            | H 011560   | 3        | #B             | 294+21     | 94.8         |           |       |
| 111111       | 4          | #A           | 91+40        | 92.4     |            | H.011560   | 3        | #A             | 259+80     | 93.5         |           |       |
| 111111       | 4          | #A           | 46+60        | 94.7     |            |            |          |                |            |              |           |       |
| 111111       | 3          | #E           | 23+43        | 95.4     |            |            |          |                |            |              |           |       |
| 111111       | 3          | #E           | 133+30       | 97.6     |            |            |          |                |            |              |           |       |
| 111111       | 3          | #E           | 106+93       | 94.9     |            |            |          |                |            |              | 1         |       |
| 111111       | 3          | #D           | 79+63        | 97.4     |            |            |          |                |            |              | 4         |       |
| 111111       | 3          | #D           | 64+43        | 97.2     |            |            |          | d1             | d2         |              |           |       |
| 111111       | 3          | #D           | 34+/1        | 94.9     |            | Aug 100    |          | Verification   | Acceptance |              |           |       |
| 111111       | 3          | #0           | 217+41       | 97       |            | Averag     | le /     | 1 3752         | 14060      |              |           |       |
| 111111       | 3          | #C           | 240+63       | 94.5     |            | Varian     | Ce.      | 1.8913         | 1.4000     |              |           |       |
| 1111111      | 3          | #B           | 252+71       | 92.3     |            | df         |          | 7              | 23         |              |           |       |
| 1111111      | 3          | #B           | 285+66       | 95       |            |            |          |                |            |              |           |       |
| 1111111      | 3          | #B           | 301+16       | 95.2     |            | F          |          | 0.9            | 568        |              |           |       |
| 1111111      | 3          | #A           | 234+00       | 96.5     |            | F Critic   | al       | 2.4            | 40         |              |           |       |
| 1111111      | 3          | #A           | 256+00       | 96.6     |            | Varianc    | e?       | Eq             | ual        |              |           |       |
| 1111111      | 3          | #A           | 291+//       | 95.1     |            | P(1<=      | ()       | 0.7            | //9        |              |           |       |
|              |            |              |              |          |            | Equal Data | setsr    | 16             | 15         |              |           |       |
|              |            |              |              |          |            |            |          |                |            |              |           |       |
|              |            |              |              |          |            |            |          |                |            |              |           |       |
|              |            |              |              |          |            |            |          |                |            |              |           |       |
|              |            |              |              |          |            |            |          |                |            |              |           |       |
|              |            |              | . Tabat      |          | _          |            |          |                |            |              |           |       |
| hows Main    | ine Lots w | ith "MI -" N | lix lises on | h/**     | 5          |            | -        |                |            |              |           |       |
| notro indiri | LOID W     |              | 00000        | <u> </u> | -          |            |          |                |            |              |           |       |
| Pave 201     | 3 v13.04.2 | 24           |              |          |            |            |          |                |            |              | 6/16/2016 |       |
|              |            |              |              |          |            |            |          |                |            |              |           |       |
|              |            |              |              |          |            |            |          |                |            |              |           |       |

## Roadway Report

This tab produces a summary of roadway data that is project specific.

- 1. Choose the desired project from the dropdown. The associated information will populate.
- 2. The dropdown will filer the information for Mainline, Minor, or Mainline and Minor mix use.
- 3. Summary of roadway core information.
- 4. Print a project summary of roadway data.

| 4                        | В                                       | С                | D                        | E                        | F                | G                     | Н                     | 1        | J           | К           | L                     | M                                          | N                          | 0                             | Р                           | QR             | S           | T              |
|--------------------------|-----------------------------------------|------------------|--------------------------|--------------------------|------------------|-----------------------|-----------------------|----------|-------------|-------------|-----------------------|--------------------------------------------|----------------------------|-------------------------------|-----------------------------|----------------|-------------|----------------|
| 1                        |                                         |                  |                          |                          | _                | Roadwa                | y Summ                | ary Repo | ort         |             |                       |                                            |                            |                               |                             | <u></u>        |             |                |
| 2                        | Н                                       | 011560           |                          | Pla                      | nt H000          |                       | Design leve           | 1        |             | Mix Type    | Wearin                | ng Course                                  |                            |                               |                             |                | _           |                |
| 4<br>5<br>6<br>7         | Some Cont                               | Doe<br>ractor    |                          | 1                        | Show:            | Mainli                | ne only               | 2        |             | JMF MIX USE | ML - V                | vvearing                                   |                            |                               |                             | **lf a         | ny informat | tion is not sł |
| 8<br>9<br>10<br>11<br>12 | Mix Use<br>ML - Wearing<br>ML - Wearing | Method<br>1<br>1 | Acc Mean<br>95.7<br>95.9 | Ver Mean<br>95.9<br>96.0 | 0.2<br>0.1       | Acc PWL<br>100<br>100 | Acc Pay<br>100<br>100 | Res Mean | Res PWL<br> | Res Pay     | Gmm<br>2.429<br>2.429 | Gmm From<br>JMF Validated<br>JMF Validated | Adj Factor<br>1.00<br>1.00 | Total Ton<br>5279.0<br>3177.0 | Adj Ton<br>5279.0<br>3177.0 |                | PRIN        | іт             |
| 13<br>14<br>15           |                                         |                  |                          |                          |                  |                       |                       | 3        |             |             |                       |                                            |                            |                               |                             |                | 4           |                |
| 16<br>17<br>18           |                                         |                  |                          |                          |                  |                       |                       |          |             |             |                       |                                            |                            |                               |                             |                |             |                |
| 20<br>21<br>22           |                                         |                  |                          |                          |                  |                       |                       |          |             |             |                       |                                            |                            |                               |                             |                |             |                |
| 23<br>24<br>25           |                                         |                  |                          |                          |                  |                       |                       |          |             |             |                       |                                            |                            |                               |                             |                | _           |                |
| 26<br>27<br>28           |                                         |                  |                          |                          |                  |                       |                       |          |             |             |                       |                                            |                            |                               |                             |                |             |                |
| 29<br>30<br>31           |                                         |                  |                          |                          |                  |                       |                       |          |             |             |                       |                                            |                            |                               |                             |                |             |                |
| 33<br>34<br>35           |                                         |                  |                          |                          |                  |                       |                       |          |             |             |                       |                                            |                            |                               |                             |                |             |                |
| 36<br>37<br>38           |                                         |                  |                          |                          |                  |                       |                       |          |             |             |                       |                                            |                            |                               |                             |                |             |                |
| 39<br>40                 | ۰ JMF CHE                               | CK Validat       | ion Input                | /alidation               | Plant Report-Val | Plant                 | Plant Monitor         | Mainline | Mainline N  | Aonitor Roa | dway Report           | Minor Proje                                | ect Summary                | Plant Summ                    | nary Plan                   | t Verification | Mainline    | Summary .      |
| READ                     | W .                                     |                  |                          |                          |                  |                       |                       |          |             |             |                       |                                            |                            |                               |                             |                |             |                |

The summary tabs to the right of the "Roadway Report" tab contain the tables for the data entered in previously covered tabs.

# Reporting

Various printouts can be made from the "Reporting" tab. Portions of the reports can be included or omitted with the "Y"/"N" dropdowns.

| Print All               | Check for Latest Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Update Material Codes from Server                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Export for Attachement  | Upload This File to Server                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Import Material Codes from File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Print Design Report     | Y       Dptimum AC and Verification Samples data         Y       Dptimum AC charts         Y       Combined Gradation         N       0.45 Curve         N       Ignition Oven Correction Factors and Verification Gradations         N       LWT Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SMM codes updated<br>6/30/2016<br>Export Material Codes to File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Print JMF Report        | N     Lottman Design       Y     JMF Input       Y     JMF       Y     JMF Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Image: state stat               |  |  |  |  |  |  |
| Print Validation Report | Y     Validation Input       Y     Validation Report       Y     Validation Plant Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Print Plant Report      | Y     Plant       Y     Plant Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Print Roadway Report    | Y     Roadway Report       Y     Mainline       Y     Mainline Monitor       Y     Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image: state stat               |  |  |  |  |  |  |
| Import All              | Image: Constraint of the sector of the se | Image: constraint of the sector of the se |  |  |  |  |  |  |
| Admin / Unlocked        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Instructions Reporting  | Material Setup Project Optimum AC Test Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s Comp. Grad. and FAA Input Mois 🕂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |

#### **DOTD Roadway Duties**

Check roadway equipment. Check tack rate. Get haul tickets. Check temperature of mix. Check yield. Choose locations for cores using random numbers. Send acceptance and resolution cores to District Lab; GPC core to Matlab Complete roadway report. Observe contractor's daily profiler set-up procedures, take IRI results.

#### Mainline Lots (92.0 min Density)7500 LF Sublots37,500 LF Lots

Travel lane base, binder and wearing; ramps > 300', interstate accel/decel lanes, turn lanes.

Take 3 Acceptance cores per sublot = 15 per lot. (To District Lab)

Take 1 Verification core per sublot = 5 per lot. (To Plant)

Take 1 Resolution core per sublot = 5 per lot. (To District Lab)

|                | Mainline Roadway Cores 37,500 LF LOT |         |      |       |         |      |       |       |      |       |         |      |      |      |
|----------------|--------------------------------------|---------|------|-------|---------|------|-------|-------|------|-------|---------|------|------|------|
| 7500 LF SUBLOT |                                      |         | 7500 | LF SU | BLOT    | 7500 | LF SU | BLOT  | 7500 | LF SU | BLOT    | 7500 | BLOT |      |
| A1             | A2                                   | A3      | A4   | A5    | A6      | A7   | A8    | A9    | A10  | A11   | A12     | A13  | A14  | A15  |
| Core           | Core                                 | Core    | Core | Core  | Core    | Core | Core  | Core  | Core | Core  | Core    | Core | Core | Core |
|                |                                      |         |      |       |         |      |       |       |      |       |         |      |      |      |
| V1 Core        |                                      | V2 Core |      |       | V3 Core |      |       | V4 Co | re   |       | V5 Core |      |      |      |
| R1 Core        |                                      | R2 Co   | re   |       | R3 Co   | re   |       | R4 Co | re   |       | R5 Core |      |      |      |

For sublots < 7500 LF, take a minimum of 3 cores. (For < 250 tons, PE decides.)

Minor Lots (90.0 min Density) 1000 Ton Lots - Bike paths, crossovers, detour roads, leveling > 1.5" thick, parking lots, shoulders > 4' wide, ramps < 300', patching, and widening > 2.5'. Take 3 minor cores per lot. (To District Lab) (For < 250 tons, PE decides.)

| Minor Mix Cores 1000 TON LOT |          |                   |  |  |  |  |  |  |  |  |  |
|------------------------------|----------|-------------------|--|--|--|--|--|--|--|--|--|
| 333 TONS                     | 333 TONS | 334 T <i>O</i> NS |  |  |  |  |  |  |  |  |  |
| M1 Core                      | M2 Core  | M3 Core           |  |  |  |  |  |  |  |  |  |

Minor without density requirements – curbs, driveways, guardrail widening, islands, joint repair, spot leveling, medians, tapers, turnouts and shoulders  $\leq$  4' paved with the roadway. (For < 250 tons, PE decides.)

Take 3 cores per project for Gmm verification. (To District Lab)

**PROJECT** --- Take 1 GPC core for asphalt cement verification (To Matlab)