STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT P.O. Box 94245 # USER'S MANUAL FOR HYDRAULICS PROGRAMS METRIC / ENGLISH VERSION (JULY 1997) Page: *i* Date: July 1997 #### TABLE OF CONTENTS | NAME | DESCRIPTION | PAGE | |----------------------|---|------| | INTRODUCTION | Introduction To the HYDR Programs | 1 | | - WELCOME | Welcome To the HYDR Programs | 3 | | - RESTRICTIONS | Restrictions and Disclaimer For the Programs | 4 | | DOS ONLY VERSION | | 5 | | - INSTALLATION | Instructions For Installing the HYDR Programs | 7 | | - ABOUT THE PROGRAMS | General Instructions For All Programs | 7 | | - EXECUTING PROGRAMS | How To Run the Programs | 9 | | WINDOWS VERSION | | 13 | | - INSTALLATION | Instructions For Installing HYDRWIN | 15 | | - ABOUT HYDRWIN | General Instructions For All Programs | 15 | | - EXECUTING PROGRAMS | How To Run the Programs | 16 | | HYDR1110 | Normal Water Surface Program | 19 | | HYDR1120 | Culvert Analysis Program: | 25 | | - HYDR112A | Round and Arch Pipes | 29 | | - HYDR112B | Reinforced Concrete Boxes | 35 | | HYDR1130 | Peak Runoff Program: | 39 | | - HYDR113A | Soil Conservation Service Method | 43 | | - HYDR113B | U.S. Geological Service Method | 47 | | HYDR1140 | Open Channel Design Program | 51 | | HYDR2130 | S. C. S. Runoff Hydrograph Program | 55 | | - HYDR213A | Single & Composite Hydrographs | 59 | | - HYDR213B | Composite Hydrograph - Time To Peak Input | 65 | | HYDR6000 | Inlet Spacing and Selection Program | 71 | | HYDR6020 | Storm Sewer Design Program | 81 | ## STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 ## Introduction To the **HYDR Programs** **July 1997** **METRIC / ENGLISH HYDRAULIC PROGRAMS** THIS PACE INTENTIONALLY LEFT BLANK #### Page: 3 Date: July 1997 #### **WELCOME** Welcome to the HYDR program series. These programs are based on the guidelines and procedures described in the <u>LA DOTD Hydraulics Manual</u>. This new set of programs works in much the same way as our previous hydraulic programs. The HYDR programs have been rewritten in order to assist the LA DOTD in their transfer of designing in English units to designing in Metric units. The metric conversion factor used internally by the programs is based on 1'' = 25 mm. These programs will <u>not</u> convert English units to Metric units or Metric units to English units! They will, however, enable you to work in either set of units depending on your design needs. The HYDR program series is available in either a DOS only format or a Windows format. The windows version is called HYDRWIN and it requires Windows 3.1 or higher. Before proceeding with running any of the programs, please read <u>all</u> of the Introduction Section and the appropriate section for the programs that were purchased, i.e., either the DOS Only Version section or the Windows Version (HYDRWIN) section. These programs are described and documented in this manual. The examples provided in this manual are presented in the DOS only format using Metric units, but the data input fields are also described in English units. The Windows programs require the same data input fields. The programs and manual are available through the General Files Section, Room 100 Headquarters, (504) 379-1107. The Water Surface Profile Program (WSPRO or HY-7) and its corresponding manual are also available through The General Files Section. This program was developed by the Federal Highway Administration and LA DOTD is not responsible for any programming errors. Page: 4 Date: July 1997 #### RESTRICTIONS AND DISCLAIMER The HYDR Programs (and HYDRWIN) have been developed by the Louisiana Department of Transportation and Development (LA DOTD) for the design of projects conducted by the department. They are in accordance with the guidelines set in <u>LA DOTD Hydraulics Manual</u>. They are available upon request to consultants under contract with LA DOTD. Neither the Louisiana Department of Transportation and Development nor the programmers shall bear any responsibility for any errors that may occur in the use of these programs other than for state projects under contract with the department. The LA DOTD also retains the right to revise, replace, or terminate the use of these programs at any time. The LA DOTD Hydraulics Section will assist you in the use of our programs only. If you choose to use a different editor from the one provided or not use the HYDRMENU program, then you should consult with your firm's computer support section if any problems arise. If there are any questions or problems with the HYDR Programs or HYDRWIN, please contact the Hydraulics Section at (504) 379-1306. ## STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT P.O. Box 94245 ## Instructions For the HYDR Programs (DOS Only Format) **July 1997** **METRIC / ENGLISH HYDRAULIC PROGRAMS** THIS PAGE INTENTIONALLY LEFT BLANK #### INSTALLATION A batch file named INSTALL.BAT, included in the package, may be used to install the programs onto your hard drive. This batch file will put all the programs into a directory entitled "C:\#HYDR". Page: 7 Date: July 1997 To use the install program, type a:install at the command prompt, (i.e., $C:\$ a:install). Optionally, you may create your own hard drive directory and copy into it all the files on the diskette. #### ABOUT THE HYDR PROGRAMS The HYDR programs have been rewritten to make them more user friendly. To do this, an editor named HYDREDIT is provided with the package. Descriptions of some of the HYDREDIT features follows. Comment cards have been added to the data input files to assist the user in the data entry. The comment cards have an abbreviated heading of what needs to be coded in the program. All comments are preceded by an '*'. The only comment card that may be changed is the REMARKS line, (*Remarks: ...). Except for the REMARKS line, all other comments are ignored by the programs. The programs are no longer column specific. That is, data does not have to be coded into a specific column, but each data entry must be separated a space. Except for the "Designer Name" and "Remarks" fields, all data fields should be continuous. For example, the "Project Number" may be entered as 999-99-9999 or 99999999 or 99A; it may not, however, be coded as 999 99 9999. The program will read the latter as three separate data entries instead of one because of the spaces between the numbers. Subsequently, the program will not run properly and an error message will occur. To assist the user, the data entry lines on the input screen have been divided into individual fields. A '|' is used to separate the fields. Using the [TAB] key will enable you to move forward from field to field. Pressing the [SHIFT] key along with the [TAB] key allows you to move backwards from field to field. Other specific key functions are listed on the following page. #### ABOUT THE HYDR PROGRAMS CONTD. #### **Key Functions:** [F1] = HELP Pressing this key will bring up a description, including data entries needed, for the current program being used. [F2] = SAVEAS/END This key enables the user to change the name of the data input file. The computer will then exit the data input screen, run the program and display the output to the screen. Be sure to keep the correct extension on the file name. [F3] = SAVE/END Pressing this key will save the program under the current name and then exit the data input screen, run the program and display the output to the screen. [F4] = CANCEL This key cancels the changes made to the data input screen and then exits. [F5] = REPEAT LINE This key repeats the line the cursor is on. [F6] = DELETE LINE This key deletes the line the cursor is on. [F7] = COPY LINE TO SCRATCHPAD (see F8 description) [F8] = PASTE LINE FROM SCRATCHPAD AFTER THIS LINE To copy a line to another place in the data file, position the cursor on the line you want to copy and press [F7]. Next move the cursor to the line you want to copy it after and press [F8]. Two sample input files are provided for each program, one in English (e.g., EXAMPLEE.110) and one in metric (e.g., EXAMPLEM.110). You may select one of the existing files or enter a new file name. If you select one of the example files, you may rename it using the SAVEAS/END command. Please note that all the programs are designed to look for a unique extension on the data input file name that is associated with the individual program. For example, all HYDR112A data input files should have the extension ".12A" on them. When a new data input file is created, the correct extension will automatically be put on the new name. Make sure you do not change this extension. Otherwise, the programs will not be able to read the data input file. #### **EXECUTING THE PROGRAMS** Included in the package is a menu program entitled HYDRMENU. This program provides an easy way to edit the HYDR data input files and execute the programs. Below are a list of instructions on how to use this menu. - 1. After all the programs have been installed to your hard drive, access the menu program by first changing the directory to C:\#HYDR. - 2. At the command prompt type *hydrmenu* and press [ENTER]. The following menu will be displayed. ``` LADOTD HYDRAULICS PROGRAMS PROGRAMS AVAILABLE: a. HYDR1110 - Normal Water Surface b. HYDR112A - Hydraulic Analysis of Culverts Types 1,2,3,4,8 c. HYDR112B - Hydraulic Analysis of Culverts Type 5 e. HYDR113A - SCS Peak Runoff f. HYDR113B - USGS Peak Runoff g. HYDR1140 - Open Channel Flow h. HYDR213A - SCS Hydrograph - Types 1 & 2 i. HYDR213B - SCS Hydrograph - Type 3 j. HYDR6000 - Inlet Spacing k. HYDR6000 - Storm Sewer Design x. STOP ENTER PROGRAM LETTER: F1=HELP ``` - 3. To run the individual programs, type the letter corresponding to the program you want to execute. - 4. A file menu will then appear. All the data input files associated with the program you selected will be displayed. You may select
one of the existing files, or enter a new data input file name. To select a file from the list, use the up [1] or down [1] arrow keys to highlight a file and then press [ENTER]. If you type in a new data input file name, HYDRMENU will copy model data for the program you selected into that file. #### EXECUTING THE PROGRAMS CONTD. NOTE: The input file extension will tell you which program the files are associated with. For example, all input files for HYDR1110 will have an extension of ".110". Page: 10 Date: July 1997 - 5. If you choose to create a new file name, the computer will prompt you to specify English units or Metric units. Type either e or m. - 6. Edit the input data. HYDREDIT is the default editor for the programs. HYDREDIT will provide formatted fields for some of the input data. - 7. Press [F3] to save the data or [F2] to save the data under a different name. The program will then be executed and the output displayed on the monitor. Use the arrow keys or [PAGE UP]/[PAGE DOWN] keys to scroll through the output. The [HOME] key will bring you to the beginning of the output and the [END] key to the end of the output. - 8. To get out of the output screen, press the [ESC] key. HYDRMENU will then ask you if you want the output printed. Type y or n. Any other letter will be read like an [N] by the computer. #### **ALTERNATE EXECUTION** A file named HYDRMENU.INI, which is provided with this package, is used by HYDRMENU to determine which editor to use. If you want to use your own editor, you may substitute that editor program name in the first line of HYDRMENU.INI. When the input data is saved, the program will run and the output data will be displayed. Press escape to terminate display of the output data. Initially, the data will be displayed by the BROWSE2 program. You may substitute your own program name in the second line of HYDRMENU.INI. #### **ALTERNATE EXECUTION CONTD.** To execute a program without using HYDRMENU: 1. You may execute the programs directly from the floppy disk or you may copy them to a hard disk. No special installation procedures are required. Page: 11 Date: July 1997 - 2. Create an input file. You may use any other word-processing program or editor that will create an ASCII text file. Note that the input data should follow exactly the format explained in the user manual for the program. A good way to start is to copy one of the example files as a model. - 3. Execute the program by entering - A. The program name - B. The input file name - C. The print file name For example, if you have the program diskette in drive A and you want to run the Storm Sewer Program (HYDR6020) using the input data file "HYDR6020.IN" on the diskette in drive B and then send the output to the printer, type: A>HYDR6020 B:HYDR6020.IN PRN THIS PACE INTENTIONALLY LEFT BLANK # STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT P.O. Box 94245 Page 13 Baton Rouge, Louisiana 70804-9245 ## Instructions For HYDRWIN (Windows Format) **July 1997** **METRIC / ENGLISH HYDRAULIC PROGRAMS** THIS PACE INTENTIONALLY LEFT BLANK #### **INSTALLATION** To install HYDRWIN, go to the Program Manager in Windows. Select "File", then "Run" and type *a:\setup* at the command line. Page: 15 Date: July 1997 The setup program will copy several files to a directory named "HYDRWIN". The default drive for the programs will be drive C, but you may use any drive you wish. The setup program should create an icon (Windows 3.1) or an application (Windows 95) named "HYDRWIN". If it does not, you may create one yourself, or you may run the program from the Program Manager: "C:\HYDRWIN\HYDRWIN.EXE". #### ABOUT HYDRWIN HYDRWIN was developed to make the LA DOTD hydraulics programs easier to use. Descriptions of some of the HYDRWIN features follows. #### **Key Functions:** [TAB] - Moves the cursor to the next field. [Arrows] - Moves the cursor within a field. MOUSE POINTER - May be used to position the cursor on an item. #### Menu Choices: FILE - choose file options NEW - start a new file OPEN - open an existing file SAVE - Save the data entered so far SAVE AS - Save an existing file under another name EXIT - Exit the program and return to the menu RUN - Run the program to do the calculations. RUN - All calculations will be performed and the output displayed. CANCEL - Cancels the run. #### ABOUT HYDRWIN CONTD. #### **Key Functions Contd.:** PRINT - Print the results of RUN. OK - The output will be sent to the printer. CANCEL - Cancels the print job. SETUP - Allows selection and format of printer. EDIT - Will allow you to insert and delete lines for items which have a scroll bar. INSERT - Will insert a line before the line in which the cursor is positioned. DELETE - Will delete the line in which the cursor is positioned. Page: 16 Date: July 1997 HELP - Will display the help information. #### **EXECUTING THE PROGRAMS** #### **Input Files:** To run HYDRWIN, double-click on the HYDRWIN program icon. The disclaimer and general information about running the programs will come up. Click on the "OK" and the list of available programs will appear. To open a specific program, click the button for that program. The first thing each program does is display a "File Selection" menu. The program will look for files with an extension which matches the program number. For example, program HYDR1110 looks for files which end in ".110". Select a file by double clicking on it or create a new file by typing a new name in the "File Name" box. Two sample input files are provided for each program, one in English (e.g., ENGLISH.110) and one in metric (e.g., METRIC.110). You may select one of the existing files or enter a new file name. Please note that whatever file name you choose, HYDRWIN will put the proper extension on it, whether you want it to or not. If you select one of the example files, you may rename it using the "saveas" option from the menu. Once in an input file, to choose English units or Metric units simply click inside the circle of the one desired. These programs will not convert from English to Metric or Metric to English. EXECUTING THE PROGRAMS CONTD. #### **Input Files Contd.:** Except for the "Designer Name", "Project Number" and "Remarks" fields, all data fields should be continuous. For example, the "Station Number" may be entered as 1+500 or 1+500.000 or 15R or Sum_creek; it may not, however, be coded as 1 500. The program will read the latter example as two separate data entries instead of one because of the space between the numbers. Subsequently, the program will not run properly and an error message will occur. Page: 17 Date: July 1997 #### Run: The run option on the menu will take the input data you have entered on the screen and process it using the appropriate hydraulics program. The results will be displayed in a window. You may scroll up and down to view the results. #### **Print:** The print option will copy the results of the "Run" option to the printer. You must "Run" before you print. THIS PACE INTENTIONALLY LEFT BLANK ## STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT P.O. Box 94245 #### **HYDR1110** ## **Normal Water Surface Program** **July 1997** **METRIC / ENGLISH HYDRAULIC PROGRAMS** Page: 20 Date: July 1997 HYDR1110 is a computer program which computes the normal water surface elevation, area of opening, and average velocity for a given channel cross-section as outlined in Chapter I of the <u>LA DOTD Hydraulics Manual</u>. #### **EXAMPLE INPUT** An example of the input screen and data for running the program is: | | INE TO SCRAT | CHPAD F8=PASTE LINE FROM SCRATCHPAD AFTER THIS I | |-------------------------------------|---|--| | *HYDR111C | METRIC **** | ************* | | *** INPUI | DATA FOR HY | DR1110 - NORMAL WATER SURFACE | | rada bili bili bir adaya, da terdi | nami sykyttäämämikis | ITH '*' IN COLUMN 1 ARE COMMENTS. | | | | ************ | | DOTD ENGI | | * Designer Name | | | 00 *
Sample data | * Project Number | | | | ***************** | | * Station | * Number | of * Discharge * Channel slope * | | | 医克雷氏氏征 医克里氏病 医克里氏 医克里氏试验检尿病 医克克氏病 医二甲基甲基二甲基甲基 | * (m3/s) * (m/m) * | | ****** | ***** | ****** | | | 8 | 28.32 0.0050 | | | | ******* | | 19. Bilita iyo regase ke asali da d | territatik dikun di, sirilat ribatik dikebikata | n * Roughness * | | * (m) | | * Coeff. * ********** | | 4.572 | 21.946 | | | 6.096 | 20.726 | 0.060 | | 7.620 | 19.507 | 0.060 | | 11.582 | 17.678 | 0.030 | | 15.850 | 17.678 | 0.030 | | 16.764 | 19.507 | 0.060 | | 18.288 | 20.117 | 0.060 | | 19.202 | 21.946 | | #### **DATA FIELDS** The input data fields are described below. Each field must have a value in it. The program will not run if any of them are left blank. - Line 1 O Designer's Name - Code in to the left of the ★ and the words "Designer Name". - Line 2 O State Project Number - This should be in the format 999-99-9999 Page: 21 Date: July 1997 #### DATA FIELDS CONTD. Line 3 Remarks A one line description of the project may be put here Line 4 Station Number - O Number of Points in the Channel Cross-Section - The maximum number of points allowed in the channel section is 25. - For the Windows version, the number of cross section points are not entered. HYDRWIN counts them instead.] - Design Discharge (m³/s) or {cfs} - Channel Slope (m/m) or {ft/ft} - Line 5 NOTE: One line for each cross section point - O Distance (m) or {ft} - Distances should be in increasing order. - Elevation (m) or {ft} - The first point should be the highest left bank elevation. The last point should be the highest right bank elevation. Elevations may increase and decrease as long as a given discharge is contained in a single channel section. When this criterion is violated, the "divided flow" error message will be given. - O Roughness Coefficient - 0.000 < n < 0.250 - The n value is for the area between the line it is coded on and the next line. Therefore,
the roughness coefficient field on the last line should be left blank. Multiple sets of data may be entered for several cross-sections. Each set of data must NOTE: begin with the DESIGNER NAME line. #### **EXAMPLE OUTPUT** An example of the program output for a normal water surface determination is on the following pages. The data input is shown on page 20. Page: 22 Date: July 1997 #### EXAMPLE OUTPUT CONTD. | والأحاف والمثالة المتعدد ورويي | ICS SECTION R: DOTD ENGIN R: Sample data | | E: 06/13/1997 | | |--------------------------------|---|--|--|---| | | STA | ATE PROJECT NUMBER 0 | 00-00-0000 | | | | | NORMAL WATER SURFACE | PROGRAM | | | ****** | ******* | ******** | ******** | * | | STATION
NUMBER OF POINTS | | | 1+000.00
8 | | | OUTPUT: | DESIGN DISC
CHANNEL SLC | CHARGE (m3/s)
DPE (m/m) | 28.32
.00500 | | | | JIPUT: NORMAL WATER SURFACE ELEVATION AREA OF OPENING (m2) AVERAGE VELOCITY (m/s) | | 19.489
12.10
2.34 | | | ***** | ***** | ******** | *********** | * | | CHANNEL | ************** CROSS-SECTIO | | | * | | CHANNEL | CROSS-SECTIO | N:
ELEVATION ROUG
21.946 | | • | | CHANNEL | CROSS-SECTIO | N:
ELEVATION ROUG | HNESS COEFFICIENT .060 .060 | * | | CHANNEL
DIST | CROSS-SECTIO ANCE (m) 4.572 6.096 | N:
ELEVATION ROUG
21.946
20.726 | HNESS COEFFICIENT | | | CHANNEL
DIST | CROSS-SECTIO A.572 6.096 7.620 11.582 15.850 | ELEVATION ROUG
21.946
20.726
19.507
17.678 | SHNESS COEFFICIENT .060 .060 .060 | • | | CHANNEL
DIST | CROSS-SECTIO
ANCE (m)
4.572
6.096
7.620
11.582 | N:
ELEVATION ROUG
21.946
20.726
19.507 | SHNESS COEFFICIENT .060 .060 .060 .060 | • | Page 1 - Part 1 ## EXAMPLE OUTPUT CONTD. | STAGE | Q | | | |--------|-------|--|--| | 20.117 | 50.68 | | | | 19.812 | 39.06 | | | | 19.507 | 28.89 | | | | 19.202 | 21.04 | | | | 18.898 | 14.34 | | | | 18.593 | 8.79 | | | | 18.288 | 4.44 | | | | 17.983 | 1.39 | ANTENNA NA PERINA PERINA PENDENA MENDENA PERINA PENDENA PENDENA PENDENA PENDENA PENDENA PENDENA PENDENA PENDEN
PENDENA PENDENA PENDEN | | | 17.678 | .00 | | | Page: 23 Date: July 1997 Page 1 - Part 2 THIS PACE INTENTIONALLY LEFT BLANK #### STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 ## **HYDR1120** ## **Culvert Analysis Program** **July 1997** **METRIC / ENGLISH HYDRAULIC PROGRAMS** THIS PACE INTENTIONALLY LEFT BLANK Page: 27 Date: July 1997 HYDR1120 is a computer program which computes headwater, outlet velocity, and depth of scour for reinforced concrete pipes, corrugated metal pipes, reinforced concrete pipe arches, corrugated metal pipe arches, plastic pipes and reinforced concrete boxes as outlined in Chapter 1 of the <u>LA DOTD Hydraulics Manual</u>. For the DOS only version, HYDR1120 has been divided into two different programs, (HYDR112A and HYDR112B), based on the type of culvert to be analyzed. This was done in order to make the coding easier using our HYDREDIT program. Each of the programs is described in detail on the following pages. In the Windows version of the program, the data input fields will change after the type of culvert has been selected. However, to obtain detail explanations of the data input fields, refer to both HYDR112A and HYDR112B of this manual. # STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT P.O. Box 94245 DOTD Baton Rouge, Louisiana 70804-9245 #### HYDR112A # Culvert Analysis Program (Round / Arch Pipes) **July 1997** METRIC / ENGLISH HYDRAULIC PROGRAMS THIS PACE INTENTIONALLY LEFT BLANK Page: 30 Date: July 1997 HYDR112A is a computer program which computes headwater, outlet velocity, and depth of scour for reinforced concrete pipes, corrugated metal pipes, reinforced concrete pipe arches, corrugated metal pipe arches, and plastic pipes as outlined in Chapter I of the <u>LA DOTD Hydraulics Manual</u>. #### **EXAMPLE INPUT** An example of the input screen and data for running the program is: ``` LADOTD HYDRAULICS DATA EDITOR - EXAMPLEM.12A F1=HELP F2=SAVEAS/END F3=SAVE/END F4=CANCEL F5=REPEAT LINE F6=DELETE LINE F7=COPY LINE TO SCRATCHPAD F8=PASTE LINE FROM SCRATCHPAD AFTER THIS LINE. *** INPUT DATA FOR HYDR112A - CULVERT ANALYSIS (ROUND/ARCH PIPES) *** NOTE THAT LINES WITH '*' IN COLUMN 1 ARE COMMENTS. ************************* DOTD ENGINEER * Designer Name * METRIC LINE I LINE 2 *Remarks: Sample data for type 1 - reinforced concrete pipe ************************* * Project * Number of * * Number * Culverts * 000-00-0000 1 LINE 3 ******************************* *** CULVERT OPTIONS 1,2,3,4, OR 8 INPUT * Type Inl Corr Num Diam Runoff Tailw Length Slope * Station Culv Cd Cd Lines (0) (mm) (m3/s) (m) (m) (m/m) ************************** 1+000.00 | 1 | 0 | 0 | 1 | 0 | 1500 | 3.68 | -1.00 | 30.5 | 0.0030 LINE 4 ********************* *** TAILWATER CARD - USED WHEN TAILWATER = -1.00, OTHERWISE IGNORED *** THE TAILWATER CARD MUST FOLLOW IMMEDIATELY AFTER THE CULVERT CARD IF USED. * Roughness L-Side Bottom R-Side Bottom * Coeff. Ratio Width (m) Ratio Slope (m/m) * Roughness L-Side Bottom ************************* 0.050 3.00 1.219 3.00 0.0030 LINE... ******************** ``` #### **DATA FIELDS** The input data fields are described below. Each field must have a value in it. The program will not run if any of them are left blank. Line 1 O Designer's Name • Code in to the left of the ★ and the words "Designer Name". Page: 31 Date: July 1997 #### DATA FIELDS CONTD. - Line 2 Remarks - A one line description of the project may be put here. - Line 3 State Project Number - This should be in the format 999-99-9999. - Number of Culverts to Analyze - For the Windows version, there is no culvert number entry. This field indicates which culvert data set is currently displayed on the screen. Only one culvert may be coded at a time. To analyze another culvert, choose [NEXT CULVERT] at the bottom of the screen.] #### NOTE: One line for each culvert Line 4 - Station - Option Code: - 1 = reinforced concrete pipe - 2 = corrugated metal pipe - 3 = reinforced concrete pipe arch - 4 = corrugated metal pipe arch - 8 = plastic pipe - Inlet Code: - 0 = projecting - 1 = headwall (square-edge) - 2 = mitered - Corrugation Code: - 0 = concrete or plastic - $1 = 2 \frac{2}{3}$ " x $\frac{1}{2}$ " - $2 = 3'' \times 1''$ - Number of Lines of Culverts - \circ Span = 0 - O Pipe Diameter (mm) or {in.} - For arch pipe, code in the round equivalent (mm) or {in.} - Estimated Runoff (m³/s) or {cfs} - O Tailwater (m) or {ft} - If a -1.00 is entered, the program will compute the tailwater for the channel cross-section given on the TW card described in the next section. - Length of Culvert (m) or {ft} - O Culvert Slope (m/m) or {ft/ft} Page: 32 Date: July 1997 #### **DATA FIELDS CONTD.** #### **Tailwater Section** This section contains a description of the input for the outfall channel. **NOTE:** This card must follow the culvert section line when the tailwater value is -1.00. Otherwise, the tailwater card described below will not be used by the program. o TW Line ... O Roughness Coefficient • Side Ratio - Left (m:1) or {ft:1} O Bottom Width (m) or {ft} O Side Ratio - Right (m: 1) or {ft: 1} O Bottom Channel Slope (m/m) or {ft/ft} #### **EXAMPLE OUTPUT** An example of the program output for a pipe design analysis follows. The data input is shown on page 30. Page: 33 Date: July 1997 #### **EXAMPLE OUTPUT CONTD.** | LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEV
HYDRAULICS SECTION METRIC | ELOPMENT HYDR1120-0527 | |---|------------------------| | DESIGNER: DOTD ENGINEER DATE: (| 06/04/1997 | | REMARKS : Sample data for type 1 - reinforc | ed concrete pipe | | STATE PROJECT NUMBER 000-0 | 00-0000 | | REINFORCED CONCRETE PIPE (INLET TYE | | | STATION | 1+000.00 | | NUMBER OF PIPES | 1 | | DIAMETER (mm) | 1500 | | DESIGN DISCHARGE (m3/s) | 3.68 | | TAILWATER (m) | 1.072 | | LENGTH (m) | 30.50 | | SLOPE (m/m) | .00300 | | | | | HEADWATER (OUTLET) | 1.513 m | | OUTLET VELOCITY | 2.69 m/s | | DEPTH OF SCOUR FOR TYPE A SOIL | .976 m | | **************** | ******** | | CHANNEL CROSS-SECTION: | | | SIDE SLOPE RATIO, LEFT (m:1) | 3.00 | | CHANNEL BOTTOM WIDTH (m) | 1.219 | | SLOPE OF CHANNEL BOTTOM (m/m) | .00300 | | SIDE SLOPE RATIO, RIGHT (m:1) | 3.00 | | ROUGHNESS COEFFICIENT | .050 | Page 1 of 1 ## STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 #### HYDR112B Culvert Analysis Program (Reinforced Concrete Box) **July 1997** **METRIC / ENGLISH HYDRAULIC PROGRAMS** THIS PACE INTENTIONALLY LEFT BLANK Page: 36 Date: July 1997 HYDR112B is a computer program which computes headwater, outlet velocity, and depth of scour for a reinforced concrete box as outlined in Chapter I of the <u>LA DOTD Hydraulics Manual</u>. #### **EXAMPLE INPUT** An example of the input screen and data for running the program is: ## **DATA FIELDS** The input data fields are described below. Each field must have a value in it. The program will not run if any of them are left blank. Line 1 O Designer's Name • Code in to the left of the ★ and the words "Designer Name". # Page: 37 Date: July 1997 ## DATA FIELDS CONTD. - Line 2 Remarks - This should be in the format 999-99-9999. - Line 3 State Project Number - Number of Culverts to Analyze - [For the Windows version, there is no culvert number entry. This field indicates which culvert data set is currently displayed on the screen. Only one culvert may be coded at a time. To analyze another culvert, choose
[NEXT CULVERT] at the bottom of the screen.] - Line **NOTE:** One line for each culvert - Station - Option Code: - 5 = reinforced concrete box - Inlet Code: - \bullet 0 = projecting - 1 = headwall (square-edge) - 2 = mitered - 3 = bevel-edge headwalls - Corrugation Code: - 0 = concrete - Number of Lines of Culverts - O Span (mm) or {ft} - O Rise (mm) or {ft} - Estimated Runoff (m³/s) or {cfs} - O Tailwater (m) or {ft} - If a -1.00 is entered, the program will compute the tailwater for the channel cross-section given on the TW card described in the next section. - Length of Culvert (m) or {ft} - O Culvert Slope (m/m) or {ft/ft} #### **Tailwater Section** This section contains a description of the input for the outfall channel. - NOTE: This card must follow the culvert section line when the tailwater value is -1.00. Otherwise, the tailwater card described below will not be used by the program. - Line ... - O Roughness Coefficient TW • Side Ratio - Left (m : 1) or {ft : 1} Date: July 1997 # DATA FIELDS CONTD. # Tailwater Section Contd. - o Bottom Width (m) or $\{ft\}$ - O Side Ratio Right (m: 1) or {ft: 1} - O Bottom Channel Slope (m/m) or {ft/ft} # **EXAMPLE OUTPUT** An example of the program output for a box culvert design analysis follows. The data input is shown on page 36. | LOUISIANA DEPARTMENT OF TRANSPORTATION AND DE
HYDRAULICS SECTION METRIC | VELOPMENT F | YDR1120-05279 | |--|------------------|--| | | 05/04/1007 | | | | 06/04/1997 | | | REMARKS : Sample data for type 5 - reinford | red concrete box | | | STATE PROJECT NUMBER 000- | 00-0000 | | | REINFORCED CONCRETE BOX (SQUARE-ED | | A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY. | | STATION | 5+000.00 | | | NUMBER OF BOXES | 1 | | | SPAN (mm) | 1500 | | | HEIGHT (mm) | 1500 | | | DESIGN DISCHARGE (m3/s) | 3.68 | | | TAILWATER (m) | 1.219 | | | LENGTH (m) | 30.50 | | | SLOPE (m/m) | .00300 | | | ************** | ***** | ***** | | HEADWATER (OUTLET) | 1.489 | m | | OUTLET VELOCITY | 1.99 | m/s | | DEPTH OF SCOUR FOR TYPE A SOIL | .820 | m | | ************ | | | Page 1 of 1 Page 39 P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 # **HYDR1130** # **Peak Runoff Program** **July 1997** THIS PACE INTENTIONALLY LEFT BLANK Date: July 1997 HYDR1130 is a computer program which computes peak rate of runoff by the Soil Conservation Service (SCS) and the United States Geological Service (USGS) methods as outlined in Chapter I of the <u>LA DOTD Hydraulics Manual</u>. For the DOS only version, HYDR1130 has been divided into two different programs, (HYDR113A and HYDR113B), based on which method is to be used. This was done in order to make the coding easier using our HYDREDIT program. Each of the programs is described in detail. In the Windows version of the program, there is a place to choose either the SCS method or the USGS method. The data input fields will change depending on the method selected. However, to obtain detail explanations of the data input fields, refer to both HYDR113A and HYDR113B of this manual. P.O. Box 94245 # HYDR113A Peak Runoff Program (Soil Conservation Service) **July 1997** THIS PACE INTENTIONALLY LEFT BLANK Page: 44 Date: July 1997 HYDR113A is a computer program which computes peak rate of runoff by the Soil Conservation Service (SCS) method as outlined in Chapter I of the LA DOTD Hydraulics Manual. #### EXAMPLE INPUT An example of the input screen and data for running the program is: #### DATA FIELDS The input data fields are described below. Each field must have a value in it. The program will not run if any of them are left blank. - Line 1 o Designer's Name - Code in to the left of the ★ and the words "Designer Name". - Line 2 O Remarks - A one line description of the project may be put here. - Line 3 State Project Number - This should be in the format 999-99-9999. - Number of Runoff Sections - [This field is not in the Windows version.] ## DATA FIELDS CONTD. - Line 4 NOTE: One line for each site - Station Number - Option Number = 1 - [This field is not in the Windows version.] Page: 45 Date: July 1997 - O Drainage Area (hectares) or {acres} - Hydraulic Length of Watershed (m) or {ft} - Curve Number - O 24-Hour Rainfall (mm) or {in.} - O Slope of the Watershed (%) - Minimum slope is 0.1% - O Peak Adjustment Factor # EXAMPLE OUTPUT An example of the program output for a runoff estimation by the SCS method follows. The data input is shown on page 44. | LOUISIANA DEPARTMENT OF TRANSPORTATION AND DET
HYDRAULICS SECTION METRIC | | |---|------------| | iki kata 1986 Bila Barata | 06/04/1997 | | REMARKS: Sample data for SCS Peak Runoff | | | STATE PROJECT NUMBER 000-0 | 00-0000 | | SCS PEAK DISCHARGE | | | ************** | ******** | | STATION | 1+000.00 | | DRAINAGE AREA (hectares) | 40.50 | | HYDRAULIC LENGTH (meters) | 1219.20 | | CURVE NUMBER | 80.00 | | RAINFALL (mm) | 254.00 | | SLOPE (PERCENT) | .20 | | PEAK ADJUSTMENT FACTOR | 1.00 | | ************ | ****** | | PEAK DISCHARGE (m3/s) | 4.15 | | *********** | ******* | Page 1 of 1 Page 46 P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 # HYDR113B Peak Runoff Program (U. S. Geological Service) **July 1997** THIS PACE INTENTIONALLY LEFT BLANK Page: 48 Date: July 1997 HYDR113B is a computer program which computes peak rate of runoff by the United States Geological Service (USGS) method as outlined in Chapter I of the LA DOTD Hydraulics Manual. #### EXAMPLE INPUT An example of the input screen and data for running the program is: #### DATA FIELDS The input data fields are described below. Each field must have a value in it. The program will not run if any of them are left blank. - Line 1 o Designer's Name - Code in to the left of the ★ and the words "Designer Name". - Line 2 o Remarks - A one line description of the project may be put here. - Line 3 State Project Number - This should be in the format of 999-99-9999. - o Number of Runoff Sections - This field is not in the Windows version. Date: July 1997 # DATA FIELDS CONTD. - Line 4 NOTE: One line for each site - Station Number - Option Number = 2 - [This field is not in the Windows version.] - O Drainage Area (km²) or {mi²} - Hydraulic Length of Watershed = 0 - [This field is not in the Windows version.] - O Curve Number = 0 - [This field is not in the Windows version.] - Mean Annual Rainfall (mm) or {in.} - Slope of the Watershed (m/km) or {ft/mi} - O Urbanization Factor [default = 1.00] ## **EXAMPLE OUTPUT** An example of the program output for a runoff estimation by the USGS method follows. The data input is shown on page 48. Page: 50 Date: July 1997 # EXAMPLE OUTPUT CONTD. | LOUISIANA DEPARTMENT OF TRANSPORTATION AND I HYDRAULICS SECTION METRIC DESIGNER: DOTD ENGINEER DATE | : 06/04/1997 | HYDR1130-05279 | |---|----------------|----------------| | REMARKS: Sample data for USGS Peak Runoff | 11 00/04/1997 | | | STATE PROJECT NUMBER 000 | -00-0000 | | | USGS PEAK DISCHARG | | | | ********* | | ****** | | STATION | 2+000.00 | | | DRAINAGE AREA (sq km) | 13.00 | | | URBAN ADJUSTMENT RATIO | 1.00 | | | SLOPE (m/km) MEAN ANNUAL PRECIPITATION (mm) | .90
1397.00 | | | MEAN ANNOAL PRECIPITATION (MM) | | ***** | | O2 (m3/s) | 9.82 | | | Q5 (m3/s) | 15.87 | | | Q10 (m3/s) | 20.78 | | | Q25 (m3/s) | 28.86 | | | Q50 (m3/s) | 32.18 | | | Q100 (m3/s) | 35,62 | | | ********** | ***** | ***** | | USGS PEAK DISCHARG | E | | | ******** | **** | ***** | | STATION | 3+000.00 | | | DRAINAGE AREA (sq km) | 25.90 | | | URBAN ADJUSTMENT RATIO | 1.50 | | | SLOPE (m/km) | 3.70 | | | MEAN ANNUAL PRECIPITATION (mm) | 1270.00 | | | ************ | | ***** | | Q2 (m3/s) | 16.32 | | | Q5 (m3/s)
O10 (m3/s) | 24.70 | | | atiliti kikalika atau 12 Tin kaat sii 18 kilastiin ee ya daka 12 mme de eenala kii too ee aana ka 12 mm. Ti | 30.68
38.07 | | | Q25 (m3/s)
Q50 (m3/s) | 38.07
42.88 | | | Q30 (m3/s)
0100 (m3/s) | 48.36 | | | Q100 (M3/3) | | | Page 1 of 1 Page 51 P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 # **HYDR1140** # **Open Channel Design Program** **July 1997** Date: July 1997 HYDR1140 is a computer program which computes the normal depth of water, bottom width or design discharge for a given channel cross-section as outlined in Chapter I of the <u>LA DOTD</u> <u>Hydraulics Manual</u>. #### **EXAMPLE INPUT** An example of the input screen and data for running the program is: #### DATA FIELDS The input data fields are described below. Each field must have a value in it. The program will not run if any of them are left blank. - Line 1 Designer's Name - Code in to the left of the ★ and the words "Designer Name". - Line 2 Remarks - A one line description of the project may be put here. - Line 3 O State Project Number - This should be in the format of 999-99-9999. - Number of Channel Sections - [This field is not in the Windows version.] Date: July 1997 # DATA FIELDS CONTD. Line 4 PNOTE: One line for each channel section NOTE: A 0.00 value should be coded in for the item that is to be computed, (i.e. the design discharge, width of channel bottom, or depth of flow). - Station Number - Design Discharge (m³/s) or {cfs} - Channel Bottom Width (m) or {ft} - O Depth of Flow (m) or {ft} - O Side Slope Ratio Left Side (m:1) or {ft:1} - O Side Slope Ratio Right Side (m:1) or {ft:1} - Roughness Coefficient - Channel Slope (m/m) or {ft/ft} ## **EXAMPLE OUTPUT** An example of the program output for an open channel design follows. The data input is shown on page 52. | HYDRAULICS SECTION | | |---|--| | DESIGNER: DOTD ENGINEER
REMARKS: Sample data | DATE: 06/04/1997 | | STATE PROJECT NI | UMBER 000-00-0000 |
| | | | OPEN CHAI | NNEL DESIGN | | | NNEL DESIGN
************* | | | | | ************* | ********* | | ************************************** | ************************************** | | ************************************** | ************************************** | | ************************************** | ************************************** | | ************************************** | ************************************** | | ************************************** | ************************************** | Page 1 of 3 Date: July 1997 # **EXAMPLE OUTPUT CONTD.** LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT HYDR1140-052797 HYDRAULICS SECTION DESIGNER: DOTD ENGINEER DATE: 06/04/1997 REMARKS: Sample data STATE PROJECT NUMBER 000-00-0000 OPEN CHANNEL DESIGN STATION 2+000.00 DESIGN DISCHARGE (m3/s) 5.68 WIDTH OF CHANNEL BOTTOM (m) 1.219 DEPTH OF FLOW (m) SIDE SLOPE RATIO, LEFT (m:1) SIDE SLOPE RATIO, RIGHT (m:1) .905 3.0 3.0 ROUGHNESS COEFFICIENT .022 SLOPE OF CHANNEL BOTTOM (m/m) .00300 ********************* Page 2 of 3 | HYDRAULICS SECTION | | |---|--| | DESIGNER: DOTD ENGINEER
REMARKS: Sample data | DATE: 06/04/1997 | | STATE PROJECT I | NUMBER 000-00-0000 | | ODEN GU | | | OPEN CHI | ANNEL DESIGN | | | | | | | | ********** | *********** | | ************************************** | ************************************** | | ************************************** | ************************************** | | ************************************** | ************************************** | | ************************************** | ************************************** | | DESIGNER: DOTD ENGINEER DATE: 06/04/1997 REMARKS: Sample data STATE PROJECT NUMBER 000-00-0000 OPEN CHANNEL DESIGN *********************************** | | Page 3 of 3 THIS PACE INTENTIONALLY LEFT BLANK P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 # **HYDR2130** # **Runoff Hydrograph Program** **July 1997** Date: July 1997 HYDR2130 is a computer program which generates runoff hydrographs by the Soil Conservation Service (SCS) method. Composite runoff hydrographs for as many as five drainage areas may be generated. For the DOS only version, HYDR2130 has been divided into two different programs, (HYDR213A and HYDR213B), based on the type of runoff to be generated. This was done in order to make the coding easier using our HYDREDIT program. Each of the programs is described in detail. In the Windows version of the program, the data input fields will change after the type of culvert has been selected. However, to obtain detail explanations of the data input fields, refer to both HYDR213A and HYDR213B of this manual. Page 58 P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 # HYDR213A # Runoff Hydrograph Program (SCS Runoff Hydrograph Program) **July 1997** THIS PACE INTENTIONALLY LEFT BLANK Page: 60 Date: July 1997 HYDR213A is a computer program which generates runoff hydrographs by the Soil Conservation Service (SCS) method. Composite runoff hydrographs for as many as five drainage areas may be #### **EXAMPLE INPUT** generated. An example of the input screen and data for running the program is: #### DATA FIELDS The input data fields are described below. Each field must have a value in it. The program will not run if any of them are left blank. - Line 1 O Designer's Name - Code in to the left of the ★ and the words "Designer Name". - Line 2 O Remarks - A one line description of the project may be put here. - Line 3 O State Project Number - This should be in the format 999-99-9999. ## **DATA FIELDS CONTD.** - Line 3 Contd. - Station Count - This only applies to the Windows version. There is no entry, but this field indicates which station is currently displayed on the screen.] Page: 61 Date: July 1997 - Station Number - Option (1 or 2) - 1 = runoff hydrograph by SCS method - 2 = composite runoff hydrograph by SCS method (maximum of 5 watersheds) - O Number of Drainage Basins - Enter 1 for option 1 - Enter 1 5 for option 2 - Line 4 **NOTE:** One line for each watershed section - Hydraulic Length of Watershed (m) or {ft} - Average Watershed Land Slope (%) - O Drainage Area (hectares) or {acres} - O Curve Number - Rainfall (mm) or {in.} - User-Specified Time Step - This value should be the same for all watersheds in option 2 - Urban Adjustment Lag Factor For Impervious Areas - Use between 0.5-1.0 - [refer to Chapter II "Inflow Hydrograph" of the LA DOTD Hydraulics Manual - Urban Adjustment Lag Factor For Modified Hydraulic Length - Use between 0.5-1.0 - [refer to Chapter II "Inflow Hydrograph" of the LA DOTD Hydraulics Manual - Line 5 o END - An "END" line must be placed at the end of the data set. - This field is not in the Windows version. - NOTE: Other sets of data may be entered after the END line. All data sets must begin with the DESIGNER NAME line. - For the Windows version, only one station may be coded at a time. To analyze another station, choose [NEXT STATION] at the bottom of the screen.] # EXAMPLE OUTPUT The program output for the sample input on page 60 follows. | | OF TRANSPORTATION AND DEVELOPMENT | HYDR2130-063097 | |--|--|--| | SECTION | | | | e de la cial de la companya de la c | | | | Sample da | ta | | | STA | TE PROJECT NUMBER 000-00-0000 | | | | SCS RUNOFF HYDROGRAPH | | | **** | *********** | ***** | | TATION | | 1+000.00 | | | narra arrivalega anglutnu murta nya ji kala ara ini tana ara akiji ara tahun tahun kilingi kalabah bahin tahun | 4.00 | | DRAULIC L | ENGTH OF WATERSHED (meters) | 762 | | | 2000년 물통 역 보면 10분만 많아 된 동안보다 보고 된 사람들이 돌아가 되어 된다. 나는 이 보다 보다 다 | 80.0 | | | | 254.0 | | | | 1.50 | | ladi berendara 16 1911 reber denan 11 | attititise elementri tata. Decario mentri attata ne elementri da tatti dalla tra l'escene elementativa ele | 1.00 | | 6 6 6 6 6 6 6 6 6 7 7 7 7 6 7 6 7 6 7 6 | arau maliubudu munapi maliuli. Pu kulo muni mamaliu kulo kabudu kamara ya kukishi bidu bubuda ka kukishi a | 1.00 | | SER-SPECIF | TED TIME STEP (HOUR) | ,15 | | MPUTED TI | ME STEP (HOUR) | .12 | | | | | | | ada errade Bibliotech dan barran harria da aka ara bibliotech da aka aka barran bibliotech da ara barran da bar | | | | vant det Courte och dan dan av tallet et die Profesione auch 1904 of the Frank ander de 1999 filter andere det 1994 | | | a mar punsakul UP: Nerdi rubul 1: | alla diabatahana yakululuki atiku itah ya atak liku ili Makuataha ya kiku ili kuki bilataha ili katana ya kubi | | | | THE CONTROL OF THE PROPERTY OF | | | | 사용사용 하다는 물 살아보는 것이 되었다. 그 사람들은 사람들이 가지 않는 것은 것은 것은 것이 되었다. 그들은 것은 | | | | rese ball. Diseks in Mostro de la Clafe, de la Parre, de Salla, de la Clara de la Salla de Mille di deserca de | | | | 이 아들 얼마 전투 회사가 하다 그들이 하고 있다. 그들은 그는 아들은 살이 하지만 하는 것을 모르는 것 같아 있다. | | | :5:5:494444 Branto | | | | | | | | ration for the Late (M. M. Michigan). | | | | | | | | 30 | 1986년 1984년 1일 1915년 10 1월 1일 | | | 45 | | | | la filalitation de la palación a | en de relación de la como de la calabación de la composition de la composition de la calabación de la composit | | | 75 | .04 | | | 90 | .04
.04 | | | 900000000000000000000000000000000000000 | | | | | | | | 90
05
20 | .04
.05 | | | | SECTION DOTD ENGING Sample da STA' ********* PATION RAINAGE ARD PRAULIC LI JRVE NUMBED AINFALL (mm PERAGE WATI RBAN ADJUST R | STATE PROJECT NUMBER 000-00-0000 SCS RUNOFF HYDROGRAPH ************************************ | Page: 62 Date: July 1997 SCS Runoff Hydrograph - Option 1 # EXAMPLE OUTPUT CONTD. | | ····· |
 | | |-------|-------|------|--| | 10.50 | .05 | | | | 10.65
| .06 | | | | 10.80 | .06 | | | | 10.95 | .07 | | | | 11.10 | .08 | | | | 11.25 | .09 | | | | 11.40 | ,10 | | | | 11.55 | .11 | | | | 11.70 | .14 | | | | 11.85 | .18 | | | | 12.00 | .27 | | | | 12.15 | .48 | | | | 12.30 | .79 | | 2002 (1902 - 1911)
1902 (1913 - 1913) | | 12.45 | 1.07 | | | | 12.60 | 1.17 | | | | 12.75 | 1.07 | | | | 12.90 | .89 | | | | 13.05 | .69 | | | | 13.20 | .54 | | | | 13.35 | .43 | | | | 13.50 | .35 | | | | 13.65 | .29 | | | | 13.80 | .24 | | | | 13.95 | .20 | | | | 14.10 | .18 | | | | 14.25 | .16 | | | | 14.40 | .14 | | | | 14.55 | .13 | | | | 14.70 | .11 | | | | 14.85 | .10 | | | | 15.00 | .09 | | | | 15.15 | .09 | | | | 15.30 | .09 | | | | 15.45 | .08 | | | | 15.60 | .08 | | | | 15.75 | .08 | | | | 15.90 | .08 | | | | 16.05 | .08 | | | | 16.20 | .08 | | | | 16.35 | .08 | | | | 16.50 | .08 | | | | 16.65 | .07 | | | | 16.80 | .06 | | | | 16.95 | .06 | | | | 17.10 | .06 | | | | 17.25 | .05 | | | | 17.40 | .05 | | | | +/,-7 | | | | Page: 63 Date: July 1997 SCS Runoff Hydrograph - Option 1 Page: 64 Date: July 1997 # EXAMPLE OUTPUT CONTD. | | |
 |
 | |----------------|------------|------|------| | 17.55 | .05 | | | | 17.70 | .05 | | | | 17.85 | .05 | | | | 18.00 | .05 | | | | 18.15 | .05 | | | | 18.30 | .05 | | | | 18.45 | .05 | | | | 18.60 | .05 | | | | 18.75 | .05 | | | | 18.90 | .05 | | | | 19.05 | .05 | | | | 19.20 | .05 | | | | 19.35 | .05 | | | | 19.50 | .05 | | | | 19.65 | .05 | | | | 19.80 | | | | | 19.95 | .05 | | | | 20.10 | .05 | | | | 20.10 | .05
.05 | | | | 20.25 | .05 | | | | 20.40 | | | | | | .05 | | | | 20.70 | .04 | | | | 20.85 | .04 | | | | 21.00 | .04 | | | | 21.15 | .04 | | | | 21.30 | .03 | | | | 21.45 | .03 | | | | 21.60 | .03 | | | | 21.75 | .03 | | | | 21.90 | .03 | | | | 22.05 | .03 | | | | 22.20
22.35 | .03 | | | | 22.50 | .03 | | | | 22.50 | -03 | | | | 22.80 | .03 | | | | 22.95 | .03 | | | | | .03 | | | | 23.10
23.25 | .03 | | | | | .03 | | | | 23.40 | .03 | | | | 23.55
23.70 | .03 | | | | | .03 | | | | 23.85 | .03 | | | | 24.00 | •03 | | | | 24.15 | .03 | | | | 24.30 | .03 | | | | 24.45 | .03 | | | | 24.60 | .02 | | | | 24.75 | .02 | | | | | | | | SCS Runoff Hydrograph - Option 1 Page 65 P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 # HYDR213B Runoff Hydrograph Program (Composite Hydrograph - Time To Peak Input) **July 1997** Date: July 1997 HYDR213B is a computer program which generates a composite runoff hydrograph by the Soil Conservation Service (SCS) method. This program allows the time to peak to be coded into the program. Composite runoff hydrographs for as many as five drainage areas can be generated. #### EXAMPLE INPUT An example of the input screen and data for running the program is: ### DATA FIELDS The input data fields are described below. Each field must have a value in it. The program will not run if any of them are left blank. - Line I O Designer's Name - Code in to the left of the ★ and the words "Designer Name". - Line 2 O Remarks - A one line description of the project may be put here. - Line 3 O State Project Number - This should be in the format 999-99-9999. Date: July 1997 #### DATA FIELDS CONTD. ### Line 3 Contd. - Station Count - [This only applies to the Windows version. There is no entry, but this field indicates which station is currently displayed on the screen.] - Station Number - Option Number - 3 = composite runoff hydrograph by SCS method with time to peak input (maximum of 5 watersheds) - Number of Drainage Basins - Enter 1 5 # Line 4 NOTE: One line for each watershed section - User-Specified Time to Peak (minutes) - O Drainage Area (hectares) or {acres} - Curve Number - O Rainfall (mm) or {in.} - O User-Specified Time Step - This value should be the same for all watersheds - O Urban Adjustment Lag Factor For Impervious Areas - Enter 0.00 - O Urban Adjustment Lag Factor For Modified Hydraulic Length - Enter 0.00 #### Line 5 • END - An "END" line must be placed at the end of the data set. - This field is not in the Windows version. - Ø NOTE: Other sets of data may be entered after the END line. All data sets must begin with the DESIGNER NAME line. - [For the Windows version, only one station may be coded at a time. To analyze another station, choose [NEXT STATION] at the bottom of the screen.] ## **EXAMPLE OUTPUT** The program output for the sample input on page 66 is found on the following pages. Since the output is very long, only a portion of it is shown in this manual. To see the complete output, run "examplem.23b" through the program HYDR213B. ## **EXAMPLE OUTPUT CONTD.** LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT HYDR2130-063097 HYDRAULICS SECTION DESIGNER: DOTD ENGINEER DATE: 06/30/1997 REMARKS: Sample data STATE PROJECT NUMBER 000-00-0000 COMPOSITE RUNOFF HYDROGRAPH ************************* DRAINAGE AREA NUMBER 3+000.00 STATION 4.00 DRAINAGE AREA (hectares) 80.0 CURVE NUMBER 279.4 RAINFALL (mm) USER-SPECIFIED TIME TO PEAK (MIN.) 600.00 USER-SPECIFIED TIME STEP (HOUR) .15 **************************** Page: 68 Date: July 1997 Page 1 - SCS Composite Hydrograph (Option 3) | YDRAULICS SECTION
DESIGNER: DOTD ENGINEER DATE: 06/30/199 | 97 | |--|---------------------------------| | ŒMARKS : Sample data | | | STATE PROJECT NUMBER 000-00-0000 | | | COMPOSITE RUNOFF HYDROGRAPH | | | ***************** | ***** | | DRAINAGE AREA NUMBER | 2 | | 2000 | 3+000.00 | | STATION | | | STATION
DRAINAGE AREA (hectares) | 2.00 | | | 2.00
80.0 | | DRAINAGE AREA (hectares) | 사용 경험 등을 가는 사람들이 가득하는 사용으로 되었다. | | DRAINAGE AREA (hectares)
CURVE NUMBER | 80.0 | Page 2 - SCS Composite Hydrograph (Option 3) # **EXAMPLE OUTPUT CONTD.** | TIME | | | | | WATERSHED | COMPOSITE | Tl | |--------|-------|-------|-------|-------|-----------|-----------|-----| | (HOUR) | NO. 1 | NO. 2 | NO. 3 | NO. 4 | NO. 5 | | (HC | | 4.05 | .00 | .00 | .00 | .00 | .00 | .00 | 4 | | 4.20 | .00 | .00 | .00 | .00 | .00 | .00 | | | 4.35 | .00 | .00 | .00 | .00 | .00 | .00 | 2 | | 4.50 | .00 | .00 | .00 | .00 | .00 | .00 | 4 | | 4.65 | .00 | .00 | .00 | .00 | .00 | .00 | 4 | | 4.80 | .00 | .00 | .00 | .00 | .00 | .00 | 2 | | 4.95 | .00 | .00 | .00 | .00 | .00 | .00 | | | 5.10 | .00 | .00 | .00 | .00 | .00 | .00 | | | 5.25 | .00 | .00 | .00 | .00 | .00 | .00 | | | 5.40 | .00 | .00 | .00 | .00 | .00 | .00 | | | 5.55 | .00 | .00 | .00 | .00 | .00 | .00 | | | 5.70 | .00 | .00 | .00 | .00 | .00 | .00 | | | 5.85 | .00 | .00 | .00 | .00 | .00 | .00 | į | | 6.00 | .00 | .00 | .00 | .00 | .00 | .00 | | | 6.15 | .00 | .00 | .00 | .00 | .00 | .00 | | | 6.30 | .00 | .00 | .00 | .00 | .00 | .00 | (| | 6.45 | .00 | .00 | .00 | .00 | .00 | .00 | 6 | | 6.60 | .00 | .00 | .00 | .00 | .00 | .00 | (| | 6.75 | .00 | .00 | .00 | .00 | .00 | .00 | (| | 6.90 | .00 | .00 | .00 | .00 | .00 | .00 | . (| | 7.05 | .00 | .00 | .00 | .00 | .00 | .00 | | | 7.20 | .00 | .00 | .00 | .00 | .00 | .00 | | | 7.35 | .00 | .00 | .00 | .00 | .00 | .00 | | | 7.50 | .00 | .00 | .00 | .00 | .00 | .00 | | | 7.65 | .00 | .00 | .00 | .00 | .00 | .00 | | | 7.80 | .00 | .00 | .00 | .00 | .00 | .00 | | | 7.95 | .00 | .00 | .00 | .00 | .00 | .00 | 7 | | 8.10 | .00 | .00 | .00 | .00 | .00 | .00 | | | 8.25 | .00 | .00 | .00 | .00 | .00 | .00 | ε | | 8.40 | .00 | .00 | .00 | ,00 | -00 | .00 | | | 8.55 | .00 | .00 | .00 | .00 | -00 | .00 | 8 | | 8.70 | .00 | .00 | .00 | .00 | .00 | .00 | ε | | 8.85 | .00 | .00 | .00 | .00 | .00 | .00 | ε | | 9.00 | .00 | .00 | .00 | .00 | .00 | -00 | ç | | 9.15 | .00 | .00 | .00 | .00 | .00 | .00 | ç | | 9,30 | .00 | .00 | .00 | .00 | .00 | .00 | S | | 9.45 | .00 | .00 | .00 | .00 | .00 | .00 | ç | | 9.60 | .00 | .00 | .00 | .00 | .00 | .00 | 5 | | 9.75 | .00 | .00 | .00 | .00 | .00 | .00 | ç | | 9.90 | .00 | .00 | .00 | .00 | .00 | .00 | 9 | | 10.05 | .00 | .00 | .00 | .00 | .00 | .00 | 10 | | 10.20 | .00 | -00 | .00 | .00 | .00 | .00 | 10 | | 10.35 | .00 | .00 | .00 | .00 | .00 | .00 | 10 | Page: 69 Date: July 1997 Page 3- SCS Composite Hydrograph (Option 3) Page 70 P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 # **HYDR6000** # **Inlet Spacing and Selection Program** **July 1997** THIS PACE INTENTIONALLY LEFT BLANK Date: July 1997 HYDR6000 is a computer program which calculates the width of flooding for urban roadways with curb and gutter by the Rational Method as outlined in Chapter II of the <u>LA DOTD Hydraulics Manual</u>. ### **EXAMPLE INPUT** An example of the input screen and data for running the program is: | | · • • • • • • • • • • • • • • • • • • • | | | | SCRATCHPAD | | O DIME. | |---|--|---
---|---|------------------------------|----------------------------|---| | navalanapilpa iliji | | ************************************** | present the man day has defilled a filler. | and the standard | | ****** | **** | | 1000,000,000,000 | mang makambani kabupatèn berasa di Kabupitan | NES WITH '*' | agingga pali aliya sangsin aya sa a 1116. | all and graphers to tytological | armaga kan 141 oligi ya 115 | | | | gerpas assistant | ENGINEER | | signer Name | A PARI MANAGEMENT | | **** | | | přídí relectory | arks: Sample | 200000000000000000000000000000000000000 | | | | | | | 16000000000 | | ***** | | e. Totali eride edek | sindani is is isinatasi | elikini di kabili ki ni ko | ****** | | * Pr | oject Rain | Return Rd W | dth Num Beg | in B | egin En | d . | End | | | | Year (ft | ting the state of | | cade(%) St | | Transcript transcript 😘 🗥 | | 1.0000000000000000000000000000000000000 | | 10 10.6 | ikiladan ahli salitadda | er lan er virkal kalka astik is | wakiawa kazidalidi | | -0.400 | | 5 | 高级 医乳蛋白 化二氯甲基甲基酚 经工程证券 经收益 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基 | ****** | | and the second field of the second field of | | 100 A | ***** | | *** | VERTICAL | CURVE DATA - | ONE LINE PE | R VERTICA | AL CURVE | | * | | * | | | | | | | * | | * | | n P
******* | | | | | *************************************** | | 1895, 399, 568 | 8.96 | adulaj urang liping gripupyah, | **********
576 | |
L21.920 | **** | **** | | li nimberio no | 0.88 | | 376
795 | | 121.920 | | * | | **** | ***** | ****** | | | | ***** | **** | | *** | CATCH BAS | IN DATA - O | NE LINE FOR | EACH CATO | H BASIN | | | | * | | | | | | | * | | | | | n Drain Len | | | | | | * | <u> </u> | Type | | (名) | | off Coeff. | | | *
*Num | | ***** | ***** | ***** | | | | | *
*Num | | **********
1сво6 | 130.5 | 10.30 | 10.50 | | | | *
*Num
**** | ***** | | 130.5 | 10.30 | 0.50 | | | | * *Num **** | *******
 3+048.00 | СВ06 | | 10.30 | | | | | * *Num **** 001 002 | 3+048.00
3+080.00
3+108.96
3+137.92 | CB06
CB06
CB08
CB06 | 30.5
0.0
22.9
0.0 | 0.30
0.00
0.30
0.00 | 0.00
0.50
0.05 | | | | * *Num **** 001 002 003 004 005 | 3+048.00
3+080.00
3+108.96
3+137.92
3+169.92 | CB06
CB06
CB06
CB06 | 30.5
0.0
22.9
0.0
15.2 | 0.30
0.00
0.30
0.00
0.30 | 0.00
0.50
0.05
0.50 | | | | * *Num **** 001 002 003 004 | 3+048.00
3+080.00
3+108.96
3+137.92 | CB06
CB06
CB06
CB06 | 30.5
0.0
22.9
0.0
15.2
7.6 | 0.30
0.00
0.30
0.00 | 0.00
0.50
0.05 | | | ### **DATA FIELDS** The input data fields are described on the following page. Each field must have a value in it. The program will not run if any of them are left blank. ### Page: 73 Date: July 1997 #### DATA FIELDS CONTD. - Line 1 Designer's Name - Code in to the left of the ★ and the words "Designer Name". - Line 2 Remarks - A one line description may be put here. - Line 3 State Project Number - This should be in the format 999-99-9999. - O The Rainfall Region - Should be a 1, 2 or 3 [refer to the LA DOTD Hydraulics Manual] - O The Return Year Period - Should be 2, 5, 10, 25, 50, or 100 - If one of the above years is not specified, a 10 year return will be used. - Roadway Width (m) or {ft} - Measured from the crown to the gutter - A runoff coefficient of 0.95 is used for paved roadways - Number of Vertical Curves - [This field is not in the Windows version.] - Beginning Station - O Beginning Grade (%) - O Ending Station - Ending Grade (%) #### Line **NOTE:** One line for each vertical curve section - PI Station - PI Elevation (m) or {ft} - Length of the Vertical Curve (m) or {ft} #### Line 5 NOTE: One line for each catch basin section - Catch Basin Number - O Station of the Catch Basin - Catch Basin Type - CB0(6, 7, 8 or 9) - O Drainage Length (m) or {ft} - Distance perpendicular to the roadway (sides of a rectangle made with the roadway). - If the input value is equal to 0, the roadway width is used. - O Slope of the Drainage Basin (%) - If the input value is equal to 0, the longitudinal slope of the roadway is used with the exception of low points where a default of 0.5% is used. - Runoff Coefficient - A runoff coefficient of 0.95 is used for paved roadways. Page: 74 Date: July 1997 #### DATA FIELDS CONTD. Line 6 o STOP - The word "STOP" must be placed at the end of each data set. - [This field is not in the Windows version.] NOTE: Other sets of data may be entered after the STOP line. All data sets must begin with the DESIGNER NAME line. > [For the Windows version, this does not apply. To analyze another data set, you will need to create another file name.] ### **■** For The Windows Version Only: - o PRINT COLUMNS - Choice of two different output styles. - The 80 column option prints the output in a portrait orientation. - The 132 column option prints the output in a landscape orientation. - To select, use the mouse and click inside the circle of the one desired. #### **PROGRAM OUTPUT REMARKS** - 1. Q? - Gutter flow exceeds (0.283 m³/s) or {10 cfs} 2. Width flood? - Width of flooding exceeds (2.438 m) or {8 ft} 3. Long. Slope? - Longitudinal slope is < 0.40 or > 10.00 percent - Q bypass at the last or first catch basin > (0.00028 m³/s) or {0.01 cfs} 4. Bypass to? - 5. Spacing? - Catch basin spacing exceeds (60.96 m) or {200 ft} criterion - 6. Inter ratio? - Interception ratio is less than 0.3 #### **EXAMPLE OUTPUT** Design sketches of the plan and profile views for the example input on page 72 is on the following pages. Output for the example on page 72 follows the sketches. Date: 75 July 1997 Page: 76 Date: July 1997 PROFILE ## EXAMPLE OUTPUT CONTD. | HYDRAULICS | EPARTMENT OF SECTION | TRANSPOR | TATION AN | D DEVELOP | MENT | HYDR6000-05279
PAGE 1 | |-------------|--|----------|-----------------|-----------------------------------|-------------------|--------------------------| | STATE PROJE | OOTD ENGINEER
ECT NUMBER
Sample data | 000-00-0 | DATI
1000 Ri | :: 06/04/1
:GION: 1 | 997 | METRIC | | INPUT: | | | | | | | | REGION | | = 1 | | | | | | DESIGN STOR | M (YEARS) | - | 10 | | | | | NO. OF VERT | RM (YEARS)
'ICAL CURVES | | 2 | | | | | ROADWAY WID | OTH (m) | = 10 | . 67 | | | | | PROJECT BEG | SIN AT STATI
AT STATION | ON = | 3+017. | 520 | | | | | | | | | DEDGENIM | | | GRADE AT TH | IE BEGINNING
IE END OF THE | PROJECT | KOOECI- | -1.000 | PERCENT | | | | | | | | | | | | | | | | | | | CURVE | PI
STATION | | PI | | | | | I MOMBER I | STATION | I FPEA | ATION | | | | | 1 | 3+108.960 | 36 | 576 | | | | | 2 | 3+230.880 | 37 | .795 | | | | | | | | | | | | | CATCH | I BASIN | 1 | DRAIN | NAGE BASIN | | | | NUMBER | STATION | TYPE | LENGTH | SLOPE | RUNOFE | | | 1 | | | (m) | [(8) | COEFFICIE | NT | | 001 | 3+048.000 | CB06 | 30.50 | .300 | .50 | | | 002 | 3+048.000
3+080.000 | CB06 | .00 | .300
.000 | .00 | | | | 3+108.960 | CB08 | 22.90 | .300 | .50 | | | 003 | | CDUC | 0.0 | .000 | .05 | | | 003
004 | 3+137.920 | CDUU | | ti to vitali ya yateliji ja sabak | | | | 004 | 3+137.920 | CB06 | 15.20 | .000
.300 | .50 | | | 004 | 3+137.920
3+169.920
3+215.640
3+291.840 | CB06 | 7,60 | .300 | .50
.50
.50 | | Page: 77 Date: July 1997 Page 1 of 4 Page: 78 Date: July 1997 | | ICS SECTIO | ENT OF TRANS
N | CRIAITON | MAD DEVEL | JEMEN1 | HYDR6000-05
PAGE 2 | J2 1 3 1 | |---------------------------|--------------------------------------|-------------------------------|-------------------|------------------------------|------------|-----------------------|---------------------| | | R: DOTD EN
ROJECT NUM
: Sample | GINEER
BER 000-00-
data | DAT
-0000 R | E: 06/04/
EGION: 1 | 1997 | METRIC | | | | | ROADWAY PRO | FILE | | | | | |
NO. OF | VERTICAL C | URVES = | 2 | | | | | | ROADWAY | WIDTH (m |) = : | 10.67 | | | | | | | | STATION = | | | | | | | ensondrer de serve wodad. | 305.06.0 1.05 40 W.T.F. W.W.F.F. | ATION = | | THE LETTER SHOW AND ADDRESS. | | | | | | | NNING OF THE
OF THE PROJEC | | | | | | | aunde A | | OF THE EXCUSE | 1 | | PERCENT | | | | | AL CURVE D | | | | | | | | CURVE | LENGTH | PC
STATION | PI | | PT | G1 | G2 | | TOMBER | 1 (m) | STATION | STATION | E:T'E:A - | STATION | (PERCENT) (| (PERCENT | | 1 | 121.920 | 3+048.000 | 3+108.960 | 36.576 | 3+169.920 | -1.000 | 1.000 | | 2 | 121.920 | 3+169.920 | 3+230.880 | 37.795 | 3+291.840 | 1.000 | 400 | | | | | | | | | | | JURVE | LENGTH | PI | HIGH | POINT | Ĺ | OM BOINT | | | | (m) | STATION | STATION | ELEVATIO | ON STATI | ON ELEVATIO | N | | NUMBER | | | | | | | | | | 121 920 | 3+108.960 | BERBEIT A PRESIDE | | 3±109 | .965 36.8 | 01 | Page 2 of 4 Page: 79 Date: July 1997 | | IANA DEPA
JLICS SEC | ARTMENT OF TR
TION | ANSPORTATIO | ON AND DEVE | LOPMENT | | R6000-052
E 3 | 1797 | |-----------|---|--------------------------------------|---------------|---|--|-----------------------------|------------------|-------| | STATE | PROJECT | DENGINEER
NUMBER 000
mple data | _
-00-0000 | ATE: 06/04
REGION: 1 | /1997 | METR | IC | | | RUNOE | F COMPUI | 'ATIONS: | | | | ; AND SEL
I = 10 | | | | l IN | ILET | STATION | l | DRAIN | AGE BASI | N | 1 | TOTAL | | NO. | TYPE | | LENGTH | | SLOPE | | RUNOFF | | | 1 | 1 | | (m) | (m) | (용) | (ha) | COEFF. | (ha) | | 001 | CB06 | 3+048.000 | 30.50 | 30.48 | .300 | .093 | .50 | .125 | | 002 | СВ06 | 3+080.000 | 10.67 | | .475 | .034 | .95 | .034 | | 003 | CB08 | 3+108.960 | 22.90 | 57.92 | .300 | .133 | | | | 004 | CB06 | 3+137.920 | 10.67 | 32.00 | .475 | .034 | .95 | .034 | | 005 | CB06 | 3+169.920 | 15.20 | 45.72 | .300 | .069 | .50 | .118 | | 006 | CB06 | 3+215.640 | 7.60 | 41.36 | .300 | .031 | .50 | .076 | | 007 | CB06 | 3+291.840 | 7.60 | 34.84 | .300 | .026 | .50 | .064 | | IN
NO. | 化双氯化物 化二甲酚 医阿尔特氏征 医二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二 | STATION | TOTAL | HYDRAU | | | | Q | | | 1 | | AND A CC | was a least of the first and general growth | and the second of the second of the second | and the state of the second | /HR) (π | i3/s) | | 001 | CB06 | 3+048.000 | .077 | 43.1 | 2 13 | .62 16 | 1.35 | .034 | | 002 | CB06 | 3+080.000 | .032 | | 3 5 | .46 20 | 1.70 | .018 | | 003 | CB08 | 3+108.960 | .125 | 36.9 | 2 12 | .82 16 | 4.53 | .057 | | 004 | CB06 | 3+137.920 | .032 | 33.7 | | .46 20 | 1.70 | .018 | | 005 | CB06 | 3+169.920 | .081 | 48.1 | 8 14 | .22 15 | 9.05 | .036 | | 006 | CB06 | 3+215.640 | .058 | 42.0 | 5 13 | .49 16 | 1.87 | .026 | | 007 | CB06 | 3+291.840 | .049 | | 6 12 | .64 16 | 5.23 | .022 | Page 3 of 4 Page: 80 Date: July 1997 | | | ENGINEER
UMBER 000
ble data | -00-0000 | DATE: 06/
REGION: | '04/1997
1 | METRIC | | |---------|------------|-----------------------------------|--|--|---|----------------------|---| | | | | | 100 TO 10 | In the term of the design of the term | AND SELECTIO | 5 - 61 No 55 1 - 10 10 10 10 1 | | INLET . | SPACING | AND SELECTI | ON: | DE | ISIGN STORM | = 10 YEAR | 5 | | INL | | STATION | 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | L WIDTH OF I | a internet contract and an artist at the artist and are | | | rype | | | | | FLOODING | | | | | | (m3/s) | (m3/s) | (PERCENT) | j (m) | | | 001 (| CB06 | 3+048.000 | .034 | ∩34 | -1.000 | 2.01 | .75 | | | CB06 | 3+080.000 | | .026 | 475 | 2.01 | 1.00 | | | CB08 | | end the second of the second of the second | The Market Market and Code Code | .000 | 2.01 | 1.00 | | | CB06 | | .018 | .027 | . 475 | 2.11 | 1.00 | | 005 (| CB06 | 3+169.920 | .036 | .036 | 1.000 | 2.03 | .75 | | 006 (| CB06 | 3+215.640 | .026 | .026 | .475 | 2.07 | 1.00 | | 007 (| CB06 | 3+291.840 | .022 | .022 | 400 | 2.03
2.07
2.02 | 1.00 | | | e r | STATION | l BYPA | ASS I | PROFILE | I REMARKS | | | NO. T | rype | | l Q 1 | O INLET G | UTTER ELEV. | | | | | 1 | | (m3/s) | NO. | | | T | | 001 (| CB06 | 3+048.000 | .008 | 002 | 36.919 | | | | 002 (| CB06 | 3+080.000 | .000 | | | | | | 003 (| CBOB | 3+108.960 | .000 | | 36.614 | | | | 004 (| CB06 | 3+137.920 | .000 | 003 | 36,683 | | | | 005 (| ZB06 | 3+169.920 | | 004 | 36.919 | | | | 006 (| CB06 | 3+215.640 | .000 | 005 | 37.256 | | | | 007 (| CB06 | 3+291.840 | .000 | | 37.284 | | | | | | | | | | | | | UNOFF (| COEFFICI | ENT OF 0.95 | WAS USED | FOR PAVED | ROADWAYS. | | | Page 4 of 4 # STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT Page 81 P.O. Box 94245 Baton Rouge, Louisiana 70804-9245 ## **HYDR6020** # **Storm Sewer Design Program** **July 1997** **METRIC / ENGLISH HYDRAULIC PROGRAMS** Page: 82 Date: July 1997 HYDR6020 is a computer program which calculates the size of storm sewer pipes and the hydraulic grade line by the Rational Method as outlined in Chapter II of the <u>LA DOTD Hydraulics Manual</u>. #### **EXAMPLE INPUT** An example of the input screen and data for running the program is: #### **DATA FIELDS** The input data fields are described below. Each field must have a value in it. The program will not run if any of them are left blank. - Line 1 o Designer's Name - Code in to the left of the ★ and the words "Designer Name". - Line 2 Remarks - A one line description of the project may be put here. User's Manual (Metric/English) - HYDR6020 Date: July 1997 #### **DATA FIELDS CONTD.** - Line 3 State Project Number - This should be in the format 999-99-9999. - The Rainfall Region - Should be a 1, 2 or 3 [refer to the LA DOTD Hydraulics Manual] - O The Return Year Period - Should be 2, 5, 10, 25, 50, or 100 - If one of the above years is not specified, a 10 year return will be used. Page: 83 - Water Surface Elevation of the Outfall For the Specified Return Period (m) or {ft} - Thickness of the Roadway (mm) or {in.} - If entered as 0.0, (500 mm) or {20"} will be used - Velocity Head Coefficient. - Used to determine junction loss. - If $1 < VHCOEF \le 0$, one velocity head is used for junction loss. #### Line 4 **NOTE:** One line for each pipe - Line Number of Pipe - May be from 1 to 999 - Pipes should be entered in the order of flow - Upper End Node Number of Pipe - A stub-in pipe should have an upper end node number of 0. - All other nodes should be from 1 to 998 - Lower End Node Number of Pipe - The outfall pipe should have a lower end node number of 999 - All other nodes should be from 1 to 998 - There may be a maximum of four lines leading into a manhole. That is, no more than four lines may have the same lower end node number. Also, only one line may leave a manhole. - Length of Pipe (m) or {ft} - (Rounded to the nearest ½ meter and not exceeding 305 m) - {Whole feet, must not be > 1000 ft} - Hydraulic Length (m) or {ft} [see note **0** on p. 76] - O Drainage Slope (%) [see note on p. 76] - O Drainage Area (ha) or {acres} - Coefficient of Runoff For Drainage Area - Time of Concentration (minutes) - It will be calculated by the program if a value of 0 is entered. Otherwise, the given time of concentration will be compared to the computer generated time of concentration and the greater of the two used in the calculations. - Construction Slope (m/m) or {ft/ft} Date: July 1997 #### **DATA FIELDS CONTD.** #### Line 4 Contd. - Pipe Diameter (mm) or {in.} - If 0 is entered, the pipe size will be computed by the program. Otherwise, the entry must be a valid pipe size. The minimum pipe size is (375 mm) or {15"} and the maximum pipe size is (3600 mm) or {144"} - To code in a double line of pipe, the
pipe diameter should be preceded by 2-. (e.g., to use two 750 mm pipes, specify the pipe size as 2-750.) - Three or more pipes in a line is not accepted by this program. - O Upper Flow Line Elevation (m) or {ft} [see note @below] - Lower Flow Line Elevation (m) or {ft} | see note @below| - O Street Elevation At Upper End of Pipe (m) or {ft} - Normally this is the finished gutter elevation. #### Line 5 \bigcirc **NOTE**: Multiple sets of data may be entered as long as each data set begins with the DESIGNER NAME line and ends with an END line. [For the Windows version, this does not apply. To analyze another data set, you will need to create a new file.] #### For The Windows Version Only: - PRINT COLUMNS - Choice of two different output styles. - The 80 column option prints the output in a portrait orientation. - The 132 column option prints the output in a landscape orientation. - To select, use the mouse and click inside the circle of the one desired. - The hydraulic length and the drainage slope may not be 0 unless values for the drainage area and the time of concentration are given. - Either upper or lower flow line elevations must be given, but not both. An elevation may be specified for one or more pipes. (At least one elevation must be given for the system). Any elevations that are not specified (that is, are equal to 0), will be computed by the program by matching the centerline of the pipes. (If you need to specify an elevation of 0, use 0.1 instead.) LA DOTD User's Manual (Metric/English) - HYDR6020 Date: July 1997 ### **PROGRAM OUTPUT REMARKS** 1. Part Full - Pipe is not flowing full 2. Street Elev? - Street elevation was not given 3. Hyd. Len.? - Hydraulic length is > (305 m) or {1000 ft} 4. Conc. Time? - Time of concentration is > 120 min. 5. Pipe Diam.? - The outflow pipe diameter is smaller than the pipe leading into it. If there are two pipes in a line, the areas are compared rather than the diameters. 6. Flow Line? - The flow line elevation of the outflow pipe is higher than the flow line of the Page: 85 pipe leading into it. 7. Drain Slope? - Drainage slope is < 0.1 or > 20% 8. Const Clear? - Minimum construction clearance is violated. (200 mm for pipes < 2200 mm and 300 mm for pipes \ge 3600 mm) or $\{9" \text{ for pipes } \le 90" \text{ and } 12" \text{ for pipes } \ge 90"\}$ #### **EXAMPLE OUTPUT** A sketch of the plan and profile views for the example on page 82 is on the following page. Output for the example on page 82 follows the sketch. Date: July 1997 Date: July 1997 #### EXAMPLE OUTPUT CONTD. LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT HYDR6020-052797 HYDRAULICS SECTION PAGE 1 DESIGNER: DOTD ENGINEER DATE: 06/04/1997 REMARKS: Sample data STATE PROJECT NUMBER 000-00-0000 REGION: 1 STORM SEWER DESIGN DESIGN STORM = 10 YEARS DESIGN STAGE ELEVATION AT OUTFALL = 17.130 METRIC INPUT DATA: PIPE |----DRAINAGE----|RUN TIME CONST PIPE | FLOW LINE STREET LIN UPP LOW LEN. | HYDL SLOP AREA OFF OF SLOPE NUM END END (m) | (m) (%) (ha) | COEF CONC (m/m) DIAM | ELEVATION ELEV. (m) | (m) (%) (ha) | COEF CONC (m/m) (mm) | UPPER LOWER (m) 30.5 | 61.0 1.0 .607 | .60 .0 .0030 0 | .000 16.855 18.349 21.3 | 61.0 1.0 .405 | .60 .0 .0030 375 | .000 16.993 18.349 30.5 | 61.0 2.5 .506 | .80 .0 .0020 0 | .000 16.703 18.288 30.5 | 30.5 2.0 .324 | .50 .0 .0020 0 | .000 16.490 18.288 21.3 | 45.7 2.0 405 | .000 16.490 18.288 7 5 Page 1 of 3 #### **EXAMPLE OUTPUT CONTD.** LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT HYDR6020-052797 HYDRAULICS SECTION PAGE 2 DESIGNER: DOTD ENGINEER DATE: 06/04/1997 REMARKS ; Sample data STATE PROJECT NUMBER 000-00-0000 REGION: 1 STORM SEWER DESIGN DESIGN STORM = 10 YEARS DESIGN STAGE ELEVATION AT OUTFALL = 17.130 METRIC OUTPUT RESULTS - PART 1 |--STRUCTURE-| PIPE |-----DRAINAGE AREA----| | AREA X COEFF | LINE | UPPER LOWER | LENGTH | DIST | SLOPE | INCR. TOTAL | RUNOFF | NO. | END END | (m) | (m) (%) (ha) (ha) [COEFF. INCR. TOTAL] 7 30.5 61.0 1.00 .607 .607 .60 .364 .364 5 21.3 61.0 1.00 .405 .405 .60 .243 .243 7 30.5 61.0 2.50 .506 .911 .80 .405 .648 11 30.5 30.5 2.00 .324 1.842 .50 .162 1.174 11 21.3 45.7 3.00 .405 .405 .60 .243 .243 13 30.5 30.5 2.00 .587 2.834 .80 .470 1.887 13 3.7 .0 .00 1.538 1.538 .80 1.230 1.230 999 30.5 .0 .00 .000 4.372 .00 .000 3.117 6 7 Я 9 10 12 11 14 0 1.5 13 OUTPUT RESULTS - PART 2 |--STRUCTURE-|TRAVEL | TIME | RAIN- | CONST.| REQD. | Q | CONST LINE |UPPER LOWER | TIME | OF | FALL | SLOPE | HYDR. | CAPAC.| CLEAR NO. | END END | IN PIPE | CONCEN. | INTENS. | (m/m) | SLOPE | (m3/s) | (m) .0030 .0030 .47 10.00 177 .176 .47 10.00 177 .0030 .0030 .176 .34 10.00 177 .0030 .0036 .109 .47 10.34 175 .0020 .0020 .310 .41 10.81 173 .0020 .0020 .563 .32 7.18 191 .0040 .0042 .125 .38 11.23 171 .0020 .0019 .915 .05 12.00 168 .0030 .0020 .689 .32 12.05 168 .0020 .0022 1.380 5 4 3 .109 .335 5 .338 б 7 .373 8 11 10 9 11 .634 13 .374 12 11 0 14 .789 13 15 13 999 .470 Page: 88 Date: July 1997 Page: 89 Date: July 1997 | IYDR# | AULICS S | SECTION | | | ATION AND | | | | R6020-052
E 3 | 2797 | |----------------|----------|-------------------|------------------|--|--|--------------------|---------------|--|------------------|----------------------| | DESIG
REMAR | NER: DO | OTD ENG
Sample | INEER
data | | DATE: | 06/04/1 | 997 | | | | | | | STATE | PROJECT 1 | NUMBER | 000-00-0 | 000 | REGION | : 1 | | | | | | DESI | DES | GN STO | EWER DESIGNED TO THE SECOND SE | YEARS | 17.13 | 0 ME | TRIC | | | OUTP | UT RESU | | | | | | | | | | | | -STRUC | TURE- | Q [| PIPE | l A lai | ELOC. F | RICT. | JUNCTION |
 HYDRAULI | C GRADE | | MO | י עוגים | TOMES 1 | / 0 / \ 1 :: | The Part of the Control Contr | I
 (m/s) | 744 800 0000 | 7-21 | | I TIDDED | TOSTER | | | ו בווט | | (31137 37 1 | VIIII() | 1 /m/s - / - 1 | (11 17 | 71117 |
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | OFFER | HOWEK | | 2 | 1 | 7 | .177 | 450 | 1.08 | .06 | .09 | .09 | 17.931 | 17.750 | | 4 | 3 | <u>,</u> | .118 | 375 | 1.04 | .05 | .08 | .08 | 18.029 | 17.870 | | 6 | . | | .313 | 600 | 1.07 | .06 | .06 | .06 | 17.812 | 17.750 | | 10 | | 11 | .560 | 750 | 1.23 | .08 | .06 | .08 | 17.6/3 | 17.612 | | 10
10 | 77 | 12 | .128 | 3/5 | 1.12 | .06 | .09 | .10 | 17.798 | 17.612 | | 1/ | 7.7 | 10 | .09U | 750 | 1.30 | .09 | .00 | .09 | 17.519 | 17.401 | | 15 | 13 | 7.2 | 1 440 | 750
1050 | 1.23 | .08 | .01 | 10 | 17.308 | 17.461 | | | | | 1.440 | 3000 | 1.01 | .13 | | | 11.323 | 17.202 | | OUTP | UT RESU | ILTS - | PART 4 | | 1.08
1.04
1.07
1.23
1.12
1.36
1.25
1.61 | | | | | | | | -sTRUC | TURE- | FLOW I | INE | STREET | HYDRAI | ULICI | | | | | INE | UPPER | LOWER | ELEVAT | ION | ELEV | CLEAR | ANCE | REMARK. | s i | | | NO. | END | END | UPPER | LOWER | (m) | (m) | | | | | | | | | | | | | | | | | | 2 | 1 | | 16,946 | | | | | | | | | 4 | 3 - | 5 | 17.057
16.764 | 16.993 | | . 3; | 20 | | | | | 6 | ב | 1 | 16.764 | 16.703 | 18.288 | . 4' | /6 | | | | | - 8 | | 11 | 16.551 | 16.490 | 18.288 | .6. | | | | | | 10 | 9 | 11 | 16.636 | 16.551 | 18.227
18.227 | .42
.70 | 29
20 | | | | | 14 | 11 | 13
13 | 16.33/ | 16.2/6 | 18.227 | . 71 | n d | | | | | 15 | 0
13 | 999 | 16.133 | 16 062 | 18.288
18.288 | .71
.9! | 5 U | | | | | | ** | م موم | 4V.+47 | 40.00J | 10,200 | ٠,٥٠ | | | | | | XIT | Loss = | | _3 | | | | | | | | | | | | | IENT OF | .012 US | ED. | | | | | | .0 VI | ELOCITY | HEAD V | IAS USED | FOR LOS | SSES AT MA | NHOLES | | inde de build de coule
Salar de Substitut de la | | | | | | | 500.0 mm | | | | | | | | | 91509000 | | | | | | | inselpinangig | | | tetro di hi halialik |